# Inheritance of Linked Genes

Section 6.2

#### homework

Pg. 253 #7-10 Pg. 259 #1, 3, 4

#### Mendel's Law of Independent Assortment

homologous pairs (and the alleles they carry) segregate independently of other pairs (and their alleles)



Outcome: All allele combinations have equal probability of occurring.

# When two genes are "linked", they tend to be inherited *together*.

Linked genes do <u>not</u> assort independently, because they are located on the **same chromosome.** 



Independent Assortment produces predictable (Mendelian) ratios of allele combinations.



However... Linked genes are found in **parental** (non-recombinant) **combinations** much more frequently than expected.



The only way to produce non-parental allele combinations is through **crossing over** in Meiosis I.

Without recombination...



This is the only way for **genetic recombination** to occur between linked genes.

### Practice #1 Two plants (BBHH and bbhh) are crossed. a) What is the F1's genotype? BbHh b) List all combinations of alleles that are possible in the gametes of the F<sub>1</sub>. Indicate which combinations are parental (P) and which are recombinant (R). (P) BH bH (R) (R) Bh bH (P) c) What proportions would be expected for each gamete, if the B and H loci are unlinked? 25% each (equal probability)

- d) The F<sub>1</sub> offspring are self-fertilized. What will be the F<sub>2</sub> phenotypic ratio, if the genes are unlinked (they assort independently)?
  9:3:3:1
- e) How would the phenotypic proportions differ if the genes were linked?

Parental combinations would occur more frequently than expected.

## Practice #2

Two true-breeding fruit flies (AAbb and aaBB) are crossed. The F1 generation are all heterozygous for both genes (AaBb). The F1 are then <u>test-crossed</u>, and the offspring of the test crosses are counted up.

a) Draw the Punnett square for the parental cross of AAbb x aaBB.

b) Complete the chart by classifying the composition of the F1 gamete as either *parental* or *recombinant*.

| Phenotype of         | Number of   | F1 gamete:               |
|----------------------|-------------|--------------------------|
| test cross offspring | individuals | Parental or recombinant? |
| aB                   | 522         |                          |
| Ab                   | 515         |                          |
| ab                   | 234         |                          |
| AB                   | 229         |                          |
| Total                | 1500        |                          |

c) Based on the information in the table, are the loci for genes A and B located on *separate* chromosomes, or the *same* one?

## **Summary**

- Linked genes are located on the same chromosome.
  - they do not assort independently
- dihybrid crosses don't yield 9:3:3:1 ratios
  - parental combinations of traits are passed on more frequently than expected

# Linkage Mapping

The recombination frequency for two loci can be used to infer the physical distance between them.

Higher recombination frequency = Greater distance



- since the genes are located on the same chromosome, the only way to produce new combinations is through crossing over during Prophase I.
- the frequency of recombination (crossing over) can be used to infer physical distance between genes:
  - more recombination indicates greater distance