

Early Theories of Matter

Ancient Greeks:

continuous vs. discrete? infinitely small divisible indivisible particles

- <u>Robert Boyle (1600s)</u>: Definition of "element"
- Antoine Lavoisier (1700s):
- Law of Conservation of Mass

Dalton's Atomic Theory (1808)

- 1. All matter is made of small particles called **atoms**.
- All atoms of the same element are identical in mass and size. The atoms of one element are different from the atoms of other elements.
- 3. Compounds are created when atoms of different elements link together in fixed proportions.
- When elements react, atoms are reorganized. The atoms themselves are not changed.

Dalton's Model of the Atom

The "billiard ball" model: Dalton envisioned atoms are small, indestructible particles.

Discovery of the Electron

- Joseph John Thomson, 1897
- · Discovered the existence of negatively-charged particles in atoms
- Made his discovery by performing experiments with evacuated gas tubes, called cathode ray tubes

Particles emitted from the cathode are attracted to positive chargesThe cathode ray particles must be negatively-chargedThe cathode ray particles have a much lower mass than hydrogen atomsCathode particles are much smaller than hydrogen atomsAll metals that he tested emit identical cathode raysAll atoms contain the same negatively-charged particlesAtoms are electrically neutralAtoms must therefore contain positively-charged particles to balance the negative ones	Thomson's Observation	Inference
The cathode ray particles have a much lower mass than hydrogen atomsCathode particles are much smaller than hydrogen atomsAll metals that he tested emit identical cathode raysAll atoms contain the same negatively-charged particlesAtoms are electrically neutralAtoms must therefore contain positively-charged particles to balance the negative ones	Particles emitted from the cathode are attracted to positive charges	The cathode ray particles must be negatively-charged
All metals that he tested emit identical cathode raysAll atoms contain the same negatively-charged particlesAtoms are electrically neutralAtoms must therefore contain positively-charged particles to balance the negative ones	The cathode ray particles have a much lower mass than hydrogen atoms	Cathode particles are much smaller than hydrogen atoms
Atoms are electrically neutral Atoms must therefore contain positively-charged particles to balance the negative ones	All metals that he tested emit identical cathode rays	All atoms contain the same negatively-charged particles
	Atoms are electrically neutral	Atoms must therefore contain positively-charged particles to balance the negative ones

Thomson's Model of the Atom

- "plum pudding"
- positively-charged mass, with negatively-charged particles embedded within

Thompson plum pudding model of the atom

Discovery of the Nucleus

• Ernest Rutherford, 1911

- · Gold foil experiment
 - aimed positively-charged α particles at thin gold sheets
 - observed the deflection of a small number of $\boldsymbol{\alpha}$ particles

Video: Discovery of the nucleus

Inferences:

- The alpha particles bounced backwards because they hit a region of **positive charge**.
- The majority of the atom's volume is empty space.

Rutherford's Model:

The Nuclear Atom

Opposition to Rutherford's model:

Why don't the negative electrons fall into the positive nucleus?

The Bohr Model, 1922

- Neils Bohr proposed that electrons were restricted to fixed orbits.
- Each orbit represents an energy level, and has a different distance from the nucleus.

Each electron shell represents an energy level.

Light is emitted when an electron **absorbs energy** (is "**excited**"), and then **releases it** as it falls down to its original energy state.

Continuous Spectrum

 If the electrons could absorb any quantity of energy, a continuous spectrum would be produced.

Emission Lines

• Since a non-continuous line spectrum is observed, this means electrons can only absorb **fixed** packets of energy (**quanta**, *sing.* **quantum**).

James Chadwick, 1932

 Showed experimentally that neutral particles exist in the nucleus, along with the protons.

Bohr-Rutherford Diagrams

<u>In nucleus:</u> Number of protons Number of neutrons

In orbits:

orbits.	
1 st	2 electrons
2 nd & 3 rd	8 electrons
4 th	18 electrons
Beyond?	don't worry about it

In an orbit, place electrons <u>singly</u> before pairing

Summary

- Atoms are made up of three particles: protons, electrons, and neutrons. Their composition can be deduced using Atomic Number and Atomic Mass.
- Our understanding of the nature of matter, and of atomic structure, have evolved due to the combined work of many philosophers and scientists.

Homework

- p. 16 #1,2,4,5,9-11
- Bohr-Rutherford & Lewis diagrams for first 20 elements