Polar Molecules

Section 3.3

Recap from 2.3

Polar covalent bonds:

- ∆EN: 0.5 1.69
- electron sharing is NOT equal between atoms
- more electronegative atom has a negative dipole (∂ -)

<u>Polar molecules</u> are entire **molecules** that have partially positive and negative **ends**.

Electric

field ON

TWO things are required to make a molecule polar:

✓ presence of polar bonds – dipole within bond

 $\checkmark \textbf{3-D} \ \textbf{geometry} - \textbf{asymmetrical} \ \textbf{arrangement} \ \textbf{of bond dipoles in molecule}$

· If symmetrical, the bond dipoles would cancel each other out

Non-polar bonds NON-POLAR MOLECULE

Polarity & 3-D Geometry

Electric

field OFF

If the distribution of bond dipoles around the central atom is asymmetrical, the overall molecule will be polar.

Туре	General example	Cancellation of polar bonds	Specific example	Ball-and-stick model
linear molecules with 2 identical bonds	В—А—В	←+ +→	CO2	•••
planar molecules with 3 identical bonds	B B 120° B	, , , , , , , , , , , , , , , , , , ,	S0 ₃	
tetrahedral molecules with 4 identical bonds (109.5° apart)	B B B		CCI4	

