Enthalpy

Section 5.2

Enthalpy (H) is a measure of the total energy in a system.

Includes:

- · kinetic energy of the particles
- · potential energy of the nucleus
- potential energy of the chemical bonds

All physical/chemical changes result in changes in energy, therefore producing **changes in enthalpy**, ΔH .

$$\Delta H_{\text{system}} = H_{\text{products}} - H_{\text{reactants}}$$

 $\Delta H_{system} < 0$, exothermic reaction

 $\Delta H_{\text{system}} > 0$, endothermic reaction

Every ΔH value has THREE parts:

- 1. unit J or kJ
- 2. <u>number</u> the magnitude
- 3. sign (+/-) to show the direction
 - + value, energy is ABSORBED
 - value, energy is RELEASED

It is IMPOSSIBLE to accurately measure ΔH

- BUT...heat transfer in/out of a system can be used to infer ΔH
- make the assumption...

$$\Delta H_{\text{system}} = |q_{\text{system}}|$$

Types of Enthalpy Changes

Physical

Chemical

Nuclear

ı

MAGNITUDE TYPE

DESCRIPTION

- · Energy is used to overcome, or allow, IMF
- Particles remain unchanged
- Energy overcomes the chemical bonds within the particles
- New substances & chemical bonds
- Energy changes overcome the forces between protons and neutrons in nuclei

Molar Enthalpies

Molar Enthalpy, ΔH_r – The enthalpy change associated with a physical, chemical, or nuclear change involving ONE MOLE of a substance

Example:

When 1 mol of H_2 is combusted, 241.8 kJ is released \therefore for H_2 , ΔH_{comb} = -241.8 kJ/mol

Type of molar enthalpy change (ΔH_r)	Example of change (relevant substance shown in red)
solution (ΔH_{sol})	$NaBr(s) \rightarrow Na^{+}(aq) + Br^{-}(aq)$
combustion (ΔH_c)	$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + H_2O(I)$
vaporization (ΔH _{rap})	$CH_3OH(I) \rightarrow CH_3OH(g)$
formation (ΔH ₁)	$C(s) + 2 H_2(g) + \frac{1}{2} O_2(g) \rightarrow CH_3OH(1)$
neutralization (ΔH _{neut})*	$2 \text{NaOH(aq)} + \text{H}_2 \text{SO}_4(\text{aq}) \rightarrow \text{Na}_2 \text{SO}_4(\text{aq}) + 2 \text{H}_2 \text{O(I)}$
neutralization (ΔH _{neut})*	$NaOH(aq) + \frac{1}{2} H_2SO_4(aq) \rightarrow \frac{1}{2} Na_2SO_4(aq) + H_2O(l)$

^{*}Enthalpy of neutralization can be written per mole of base or acid.

The total enthalpy change for a reaction will depend on the amount of substance that is reacting.

Example:

combustion, Mg (s) + $\frac{1}{2}$ O₂ (g) \rightarrow MgO (s) + 607.10 kJ

Combusting 2 mol of Mg will release TWICE as much energy

$$\begin{array}{ccc} \Delta H & = & n & \cdot & \Delta H_{\Gamma} \\ \text{total enthalpy} & \text{moles of } & \text{molar} \\ \text{change} & \text{substance} & \text{enthalpy} \\ \text{(kJ)} & \text{(mol)} & \text{(kJ/mol)} \end{array}$$

Example 4.

The molar enthalpy of vaporization of Freon-12 (M=120.91 g/mol) is 34.99 kJ/mol. If 500.0 g of refrigerant is vaporized, what is the expected enthalpy change, ΔH ?

Method 1

Thermochemical equation – Include the energy term in the chemical equation: ${\rm CH_3OH} + 3/2~{\rm O_2} \Rightarrow {\rm CO_2} + 2~{\rm H_2O} + 726~{\rm kJ}$

Method 2

Write a chemical equation, then state the energy change

$$CH_3OH + 3/2 O_2 \rightarrow CO_2 + 2 H_2O$$
 $\Delta H = -726 \text{ kJ}$

Representing Enthalpy Changes

Method 1

Thermochemical equation – Include the energy term in the chemical equation:

$$CH_3OH + 3/2 O_2 \rightarrow CO_2 + 2 H_2O + 726 kJ$$

Method 2

Write a chemical equation, then state the energy change

$$CH_3OH + 3/2 O_2 \rightarrow CO_2 + 2 H_2O \quad \Delta H = -726 \text{ kJ}$$

Method 3

State the molar enthalpy of a specific reaction

*You MUST show the equation for only 1 mol of the substance!

$$\Delta H_{comb} = 726 \text{ kJ/mol}$$

Method 4

Draw a potential energy diagram

Summary

• Under constant pressure, the enthalpy change of a reaction $\Delta H,$ equals the thermal energy absorbed or released by the system:

$$\Delta H = q_{system}$$

• Theoretical values for ΔH can be obtained by using molar enthalpy values, ΔH_{r} :

$$H = n \Delta H_r$$

Homework

- Pg. 301 Practice #1-4
- Pg. 304 Practice #1-4
- Pg. 306 #3-7