Enthalpy

Section 5.2

Enthalpy (H) is a measure of the total energy in a system.

Includes:

- kinetic energy of the particles
- potential energy of the nucleus
- potential energy of the chemical bonds

All physical/chemical changes result in changes in energy, therefore producing changes in enthalpy, $\Delta \mathbf{H}$.

$$
\Delta \mathrm{H}_{\text {system }}=\mathrm{H}_{\text {products }}-\mathrm{H}_{\text {reactants }}
$$

$\Delta \mathrm{H}_{\text {system }}<0$, exothermic reaction

$\Delta H_{\text {system }}>\mathbf{0}$, endothermic reaction

Every $\Delta \mathrm{H}$ value has THREE parts:

1. unit $-J$ or $k J$
2. number - the magnitude
3. sign (+/-) - to show the direction

+ value, energy is ABSORBED
- value, energy is RELEASED

It is IMPOSSIBLE to accurately measure ΔH

- BUT...heat transfer in/out of a system can be used to infer ΔH - make the assumption...

$$
\Delta \mathrm{H}_{\text {system }}=\left|\mathrm{q}_{\text {system }}\right|
$$

Types of Enthalpy Changes

MAGNITUDE TYPE

Physical

Chemical

Nuclear

DESCRIPTION

- Energy is used to overcome, or allow, IMF
- Particles remain unchanged
- Energy overcomes the chemical bonds within the particles
- New substances \& chemical bonds
- Energy changes overcome the forces between protons and neutrons in nuclei

Molar Enthalpies

Molar Enthalpy, $\Delta \mathbf{H}_{r}$ - The enthalpy change associated with a physical, chemical, or nuclear change involving ONE MOLE of a substance

Example:
When 1 mol of H_{2} is combusted, 241.8 kJ is released
\therefore for $\mathrm{H}_{2}, \Delta \mathrm{H}_{\text {comb }}=-241.8 \mathrm{~kJ} / \mathrm{mol}$

Type of molar enthalpy change $\left(\Delta H_{l}\right)$	Example of change (relevant substance shown in red)
solution $\left(\Delta H_{\text {sad }}\right)$	$\mathrm{NaBr}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Br}(\mathrm{aq})$
combustion $\left(\Delta H_{2}\right)$	$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
vaporization $\left(\Delta H_{\text {naq }}\right)$	$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
formation $\left(\Delta H_{4}\right)$	$\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
neutralization $\left(\Delta H_{\text {nad }}\right)^{*}$	$2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
neutralization $\left(\Delta H_{\text {nedt }}\right)^{*}$	$\mathrm{NaOH}(\mathrm{aq})+\frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \frac{1}{2} \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

"Enthalpy of neutralization can be written per mole of base or acid.

The total enthalpy change for a reaction will depend on the amount of substance that is reacting.

Example: \quad combustion, $\mathrm{Mg}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgO}(\mathrm{s})+607.10 \mathrm{~kJ}$
Combusting 2 mol of Mg will release TWICE as much energy

$\underset{$| total enthalpy |
| :---: |
| change |
| (kJ) |$}{\Delta \mathrm{H}} \quad=\underset{$| moles of |
| :---: |
| substance |
| $(\text { mol })$ |$}{\Delta \mathrm{H}_{\mathrm{r}}} \quad$| molar |
| :---: |
| enthalpy |
| $(\mathrm{kJ} / \mathrm{mol})$ |

Example 4.

The molar enthalpy of vaporization of Freon-12 ($\mathrm{M}=120.91 \mathrm{~g} / \mathrm{mol}$) is $34.99 \mathrm{~kJ} / \mathrm{mol}$. If 500.0 g of refrigerant is vaporized, what is the expected enthalpy change, $\Delta \mathrm{H}$?

Method 1

Thermochemical equation - Include the energy term in the chemical equation:

$$
\mathrm{CH}_{3} \mathrm{OH}+3 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+726 \mathrm{~kJ}
$$

Method 2

Write a chemical equation, then state the energy change

$$
\mathrm{CH}_{3} \mathrm{OH}+3 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-726 \mathrm{~kJ}
$$

Representing Enthalpy Changes

Method 1

Thermochemical equation - Include the energy term in the chemical equation:

$$
\mathrm{CH}_{3} \mathrm{OH}+3 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+726 \mathrm{~kJ}
$$

Method 2

Write a chemical equation, then state the energy change

$$
\mathrm{CH}_{3} \mathrm{OH}+3 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-726 \mathrm{~kJ}
$$

Method 3
State the molar enthalpy of a specific reaction
*You MUST show the equation for only 1 mol of the substance!

$$
\Delta \mathrm{H}_{\mathrm{comb}}=726 \mathrm{~kJ} / \mathrm{mol}
$$

Method 4

Draw a potential energy diagram

Summary

- Under constant pressure, the enthalpy change of a reaction $\Delta \mathrm{H}$, equals the thermal energy absorbed or released by the system:

$$
\Delta H=q_{\text {system }}
$$

- Theoretical values for $\Delta \mathrm{H}$ can be obtained by using molar enthalpy values, $\Delta \mathrm{H}_{\mathrm{r}}$:

$$
\mathrm{H}=\mathrm{n} \Delta \mathrm{H}_{\mathrm{r}}
$$

