Temp = 25°C and Pressure = 100 kPa **Standard Enthalpies of Formation** Standard State Elements Standard state the most stable form of Section 5.5 most solid a substance, under noble gases; standard conditions most diatomic gas elements Homework Pg. 323 Practice #1, 2 bromine, mercury liquid Pg. 324 #1-10 Determining standard enthalpy of formation Standard Enthalpy of Formation (ΔH_{f}°) for a substance is easy enough... The change in enthalpy that occurs when Table 1 Standard Enthalpies of Formation for Several Compounds 1 mole of a compound is formed from its elements. • For COMPOUNDS: Table 1 on pg. 320 Compound ∆H_f° (kJ/mol) which are in their standard states. $H_2(g) + \frac{1}{2}O_2(g) -$ —— H₂O (() $\Delta H_{\rm P} = -2386 \, \rm kJ \, mol^{-1}$

Standard Conditions

Don't worry about fractions in equations. 1 mole of water formed. That's why the fraction has to be there on the left-hand side.

• For an ELEMENT in its standard state: ΔH_f° is always ZERO.

AICI ₃ (s)	-704.2
$Al_2O_3(s)$	-1675.7
CaSO ₄ (s)	-1434.1
$Ca_3(PO_4)_2(s)$	-4120.8
CH ₃ OH(I)	-239.1
CH ₄ (g)	-74.4
$C_2H_2(g)$	+228.2
C ₂ H ₅ OH(I)	-235.2
$C_2H_6(g)$	-83.8
C'h (u)	-104 -

Standard enthalpies (ΔH°_{f}) can be used t	0
calculate enthalpy of a reaction ($\Delta H^{\circ}_{reaction}$),

 $\Delta H^{\circ}_{\text{reaction}} = (\Sigma \ n_{\text{products}} \Delta H^{\circ}_{\text{products}}) - (\Sigma \ n_{\text{reactants}} \Delta H^{\circ}_{\text{reactants}})$

 $\Delta H^{\circ}_{reaction} = (\Sigma n_{products} \Delta H^{\circ}_{products}) - (\Sigma n_{reactants} \Delta H^{\circ}_{reactants})$ Example 1. Calculate the standard enthalpy of combustion for the following reaction: C_2H_5OH (I) + $\frac{7}{2}O_2$ (g) → 2 CO_2 (g) + 3 H_2O (I) $-\nabla n$ ۸U۰ $\nabla \mathbf{n}$ ۸U۰

$$\Delta H^{\circ}_{comb} = \Sigma n_{products} \Delta H^{\circ}_{products} - \Sigma n_{reactants} \Delta H^{\circ}_{reactants}$$

= $[2(\Delta H^{\circ}_{CO2}) + 3(\Delta H^{\circ}_{H2O})] - [1(\Delta H^{\circ}_{C2H5OH}) + \frac{7}{2}(\Delta H^{\circ}_{O2})]$
= $[2(-393.5) + 3(-286)] - [1(-278) + \frac{7}{2}(0)]$
 $\Delta H^{\circ}_{comb} = -1368 \text{ kJ/mol of } C_{2}H_{5}OH$

Example 2.

Using enthalpies of formation, calculate the standard change in enthalpy for the reaction:

2 Al (s) + Fe₂O₃ (s) \rightarrow Al₂O₃ (s) + 2 Fe (s)

Example 3.

 (C_3H_6O) releases 1790 kJ. Use this information to

		∆H°_f (kJ/mol)
EC3H6O (1)	C_3H_6O (I)	?
	0	
Begin Field CO2 (g) H2O (l)	CO _{2 (g)}	-393.5
	H ₂ O (I)	-285.8

Complete combustion of 1.00 mol of acetone calculate the enthalpy of formation of acetone.