Rate Laws

Section 6.5

Homework

Pg. 380 \#1-5
Pg. 382 \#1-4

Preview

For the reaction $\quad \mathbf{2} \mathrm{C}_{4} \mathrm{H}_{6} \rightarrow \mathrm{C}_{8} \mathrm{H}_{\mathbf{1 2}}$

The initial rate of reaction depends on the concentration of the reactant.

This is expressed in the rate law for the reaction:

$$
\text { rate }=k\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]^{2}
$$

$$
\text { rate }=k\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]^{2}
$$

The exponent 2 describes the effect of a change in concentration of $\mathrm{C}_{4} \mathrm{H}_{6}$, on the rate of reaction.

Trial	Initial [C$\left[H_{d}\right]$ $($ mol/L)	Initial rate (mmol/Ls)
1	0.10	32
2	0.20	128
3	0.30	$?$

rate $\propto\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]^{2}$
Therefore, if $\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]$ is doubled, the rate increases by a factor of [2] ${ }^{2}$

The Rate Law

The rate, r, is exponentially proportional to the initial concentrations of the reactants.

Thus, for the theoretical reaction: $\mathbf{a} X+\mathbf{b} Y \rightarrow$ (products),

$$
\mathrm{r} \propto[X]^{\mathrm{m}}[\mathrm{Y}]^{\mathrm{n}}
$$

Rate Law Equation aka "rate law" or "rate equation"

$\mathrm{r}=\mathrm{k}[\mathrm{X}]^{\mathrm{m}}[\mathrm{y}]^{\mathrm{n}}$

The "rate constant" A proportionality constant; valid only for a specific reaction, at a specific temperature

The values of k, and all exponents, can only be determined with EXPERIMENTAL DATA

Consider the reaction: $\mathrm{BrO}_{3}{ }^{-}+5 \mathrm{Br}^{-}+8 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{O}$

The Order of Reaction - The exponent value that describes the initial concentration dependence of a particular reactant

$$
\mathrm{r}=\mathrm{k}\left[\mathrm{BrO}_{3}^{-}\right]^{1}[\mathrm{Br}]^{1}\left[\mathrm{H}^{+}\right]^{2}
$$

- the order of reaction with respect to $\mathrm{BrO}_{3}{ }^{-}$is 1
- the order of reaction with respect to Br^{-}is 1
- the order of reaction with respect to H^{+}is 2
- the overall order of reaction is $4(1+1+2)$

	Order of Reaction			
Concentration change	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
x 1	$1^{0}=1$	$1^{1}=1$	$1^{2}=1$	$1^{3}=1$
x 2 (doubling)	$2^{0}=1$	$2^{1}=2$		
x 3 (tripling)	$3^{0}=1$	$3^{1}=3$		

Example 1. Using a Rate Law equation to predict rate

The decomposition of dinitrogen pentoxide: $\quad \mathbf{N}_{2} \mathbf{O}_{5} \rightarrow \mathbf{N O}_{\mathbf{2}}+\mathbf{O}_{\mathbf{2}}$

Is first order with respect to $\mathrm{N}_{2} \mathrm{O}_{5}$. If the initial rate of consumption is 2.1×10^{-4} $\mathrm{mol} / \mathrm{L} \cdot \mathrm{s}$, when the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ is $0.40 \mathrm{~mol} / \mathrm{L}$, predict what the rate would be if another experiment were performed in which the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ were $0.80 \mathrm{~mol} / \mathrm{L}$.
a) Y is unchanged?
b) X is multiplied by 3 ?
c) Y is multiplied by 2 ?
d) Z is multiplied by 2 ?

Strategy:

1. Write the rate law equation.
2. Solve!

Example 2. Finding a rate law equation from experimental data

$$
2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Run	Initial $\left[\mathrm{NO}_{2}\right]$ $(\mathrm{mol} / \mathrm{L})$	Initial $\left[\mathrm{H}_{2}\right]$ $(\mathrm{mol} / \mathrm{L})$	Initial rate $(\mathrm{mol} / \mathrm{L} \cdot \mathrm{s})$
1	0.400	0.100	1.10×10^{-5}
2	0.400	0.200	2.20×10^{-5}
3	0.800	0.200	8.80×10^{-5}

Part A. "Determine the rate law equation."

$$
\mathrm{r}=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{\mathrm{m}}\left[\mathrm{H}_{2}\right]^{\mathrm{n}}
$$

	$+2 \mathrm{H}_{2} \rightarrow$	$2 \mathrm{H}_{2} \mathrm{O}$		Strategy: Compare runs in which only ONE of the initial concentrations has changed. Look for the effect on the rate of reaction.
Run	Initial [NO_{2}] (molL)	Initial $\left[\mathrm{H}_{2}\right]$ (mol/)	Initial rate (mol/-s)	
1	0.400	0.100	1.10×10^{-5}	
2	0.400 [No	0.200 doubled	2.20×10^{-5}	
3	0.800	0.200	8.80×10^{-5}	

(1) Compare rate ${ }_{2}$ to rate e_{1} : When $\left[\mathrm{NO}_{2}\right]$ is constant

$\frac{\text { rate }_{2}}{\text { rate }_{1}}=\frac{2.20 \times 10^{-5}}{1.10 \times 10^{-5}}=2.00 \quad$| When $\left[\mathrm{H}_{2}\right]$ is doubled, |
| :--- |
| the rate is multiplied by $2\left(2^{1}\right)$ |\quad| The order of reaction |
| :--- |
| with respect to H_{2} is |

(2) Compare rate ${ }_{3}$ to rate ${ }_{2}$: When $\left[\mathrm{H}_{2}\right]$ is constant

$\frac{\text { rate }_{3}}{\text { rate } 2}=\frac{8.80 \times 10^{-5}}{2.20 \times 10^{-5}}=4.00 \quad$| When $\left[\mathrm{NO}_{2}\right]$ is doubled, |
| :--- |
| the rate is multiplied by $4\left(2^{2}\right)$ |\quad| The order of reaction |
| :--- |
| with respect to NO_{2} is | .

$$
\mathrm{r}=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{\mathrm{m}}\left[\mathrm{H}_{2}\right]^{\mathrm{n}} \rightarrow
$$

Run	Initial $\left[\mathrm{NO}_{2}\right](\mathrm{mol} / \mathrm{L})$	Initial $\left[\mathrm{H}_{2}\right](\mathrm{mol} / \mathrm{L})$	Initial rate ($\mathrm{mol/L} \cdot \mathrm{~s}$)	Strategy: Plug in the data from any of the runs.
1	0.400	0.100	1.10×10^{-5}	
2	0.400	0.200	2.20×10^{-5}	
3	0.800	0.200	8.80×10^{-5}	

Part B. "Calculate a value for the rate constant." This means: Find the value of k.

$$
\mathrm{r}=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2}\left[\mathrm{H}_{2}\right]^{1}
$$

$1.10 \times 10^{-5} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}=\mathrm{k}(0.400 \mathrm{~mol} / \mathrm{L})^{2}(0.100 \mathrm{~mol} / \mathrm{L})^{1}$
$0.000688 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~s}=\mathrm{k}$

Overall order of reaction	Units of k
1	$1 / \mathrm{s} \mathrm{or} \mathrm{s}^{-1}$
2	$\mathrm{~L} / \mathrm{mol} \cdot \mathrm{s}$
3	$\mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~s}$

Relating Reaction Rate to Time

Since $r_{a v} \propto \frac{1}{\Delta t} \quad$ and $\quad r_{a v} \propto[A]^{n}$, then $\quad \frac{1}{\Delta t} \propto[A]^{n}$

