Reaction Mechanisms

Section 6.6

Homework

Recall...

· Collision theory

- Rate laws describe the relationship between a change in reactant concentration, and rate of reaction
 - Exponents are experimentally-determined and DO NOT come from the coefficients in the chemical equation.

4 HBr + $O_2 \rightarrow$ 2 H₂O + 2 Br₂

- extremely unlikely this can happen in one step
- Too many molecules need to collide simultaneously, with correct alignment!
- Complicated reactions are thought to occur in several *smaller steps* • smaller steps are called **elementary steps**

	4 HBr + $O_2 \rightarrow$		2 H ₂ O + 2 Br ₂	
step 3	2HOBr +	2HBr →	$H_2O + 2Br_2$	(fast)
step 2	HOOBr +	HBr \rightarrow	2HOBr	(fast)
step 1	HBr +	$O_2 \rightarrow$	HOOBr	(slow)
		• •		

In this reaction, HOOBr and HOBr are reaction intermediates:

- transient molecules, formed as products of elementary steps
- · react further to give the observable products
- are never seen as products of the reaction

A **reaction mechanism** is a best guess of how a reaction actually occurs.

- made up of the series of elementary steps that sums to the overall reaction
- supported by experimental evidence

- For a reaction that occurs in multiple steps, the overall rate is determined by *the slowest step*.
- The slowest step is called the rate determining step (RDS).

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	The rate law equation can be DIRECTLY linked to the rate determining step.For a multi-step mechanism,if the RDS is: $mX + nY \rightarrow products$ Then the rate law expression (for the whole reaction) is: $r = k [X]^m [Y]^n$ The exponents come from the coefficients in the RDS!!
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 Reaction mechanisms are best guesses we can't actually SEE these reactions happening there are two requirements for a proposed reaction mechanism: the elementary steps add up to the overall reaction the slowest step (RDS) is consistent with the experimentally-determined rate law
Example 1 For the proposed reaction mechanism: $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Homework • P. 386 practice #1-3 • P. 387 #1-8 (skip 2, 4)