

Equilibrium position can be described qualitatively and quantitatively.

 $H_2 + I_2$ ∠ 2 HI

Qualitative: "The equilibrium lies to the RIGHT."

• This means the FORWARD reaction is favoured.

You can also say that the PRODUCTS are favoured.

Quantitative: "The percent reaction is 78%".

• This means that at equilibrium, 78% of the possible product is present.

For a closed system, the **same equilibrium concentrations** will be reached, whether equilibrium is approached in the forward or the reverse direction.

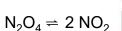
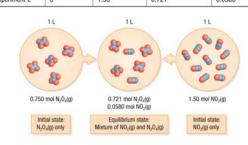
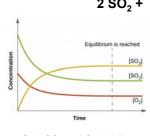
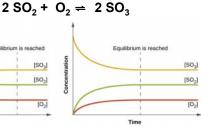



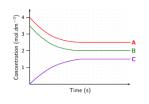
Table 1 Changes in Concentrations of $NO_2(g)$ and $N_2O_4(g)$ by the Forward or Reverse Reactions


	Initial concentrations (mol/L)		Final concentrations (mol/L)	
	N ₂ O ₄ (g)	NO ₂ (g)	N ₂ O ₄ (g)	NO ₂ (g)
Experiment 1	0.750	0	0.721	0.0580
Experiment 2	0	1.50	0.721	0.0580


It doesn't matter if the system starts with ONLY REACTANT or ONLY PRODUCT, or even a COMBINATION...

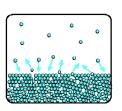
The same concentrations are reached at equilibrium!

Different reaction; same principle, represented graphically



 $\frac{\text{Only SO}_2 \text{ and } \text{O}_2 \text{ initially:}}{\text{Reaction moves to the right}}$

 $\frac{\text{Only SO}_3 \text{ initially:}}{\text{Reaction moves to the left}}$


Types of Equilibrium

<u>Chemical:</u> Equilibrium between forward and reverse reactions

Solubility: Equilibrium between dissolving & crystallizing

Phase: Equilibrium between changes of state

- Most chemical and many physical processes are reversible.
- Equilibrium describes a condition in which the rate of the forward reaction equals the rate of the reverse reaction.
 - On a macroscopic level, it appears as though the system is unchanging, since the concentrations will remain constant.

ICE tables are used to analyze equilibrium systems.

ICE stands for...

Initial concentration Change in concentration Equilibrium concentration

<u>S</u> ;	<u>Sample ICE table</u> $H_2 + I_2 \Rightarrow 2 HI$							
		F	2		2	+	2 HI	
	Initial concentration (mol/L)	0.1	00	0.1	100	(0.000	
	Change in concentration (mol/L) Equilibrium concentration (mol/L) concentration mol L-1		-0.080		-0.080		+ 0.160	
			020 0.020		(
			H ₂ + I ₂ \rightarrow 2 HI HI H ₂ I ₂ equilibrium state		$\Delta[HI] = 2 \Delta[H_2] = 2 \Delta[I_2]$ $= 2 \Delta[I_2]$ why??			
	time →							

Sample ICE table 2: Calculating unknown equilibrium concentrations

	H ₂	l ₂ =	<u></u>
Initial concentration (mol/L)	0.600	0.600	0.000
Change in concentration (mol/L)	- X	- X	+ 2x
Equilibrium concentration (mol/L)	0.600 - x	0.600 - x	0.960

Strategy:

- 1. Let "x" = the change in concentration per 1 mole of your substances.
- 2. Use the balanced equation to write expressions for the change in
- concentration of each substance.
- 3. Solve for x.
- 4. Find unknown concentrations.

Example 1.

Calculating Concentrations at Equilibrium

If the reaction begins with 1.00 mol/L concentrations of H₂ and F₂, and no HF, use an ICE table to **calculate the concentrations of H₂ and HF at equilibrium.** The equilibrium concentration of F₂ is measured to be 0.24 mol/L.

	H ₂	F ₂	+	2 HF
Initial concentration (mol/L)				
Change in concentration (mol/L)				
Equilibrium concentration (mol/L)				

Summary

- Dynamic equilibrium refers to a state in which the rate of a forward reaction equals the rate of its reverse reaction.
 chemical reaction; change of state; dissolving
- Equilibrium systems can be analyzed mathematically using ICE tables.
- Changes in concentration reflect stoichiometric relationships. • If A \rightarrow 2 B, then Δ [A] = x and Δ [B] = 2x

Example 2.

 $4.0\ mol\ of\ NH_3$ is introduced into a 2.0 L container, and heated. After a while, the concentration of NH_3 is found to be constant, at 1.0 mol/L. Determine the equilibrium concentrations of the other two entities.

	2 NH ₃	+	N ₂	3 H ₂
Initial concentration (mol/L)				
Change in concentration (mol/L)				
Equilibrium concentration (mol/L)				