Equilibrium Law

Section 7.2

Homework

Equilibrium Law (7.2)
Pg. 431 Practice \#1-3
Pg. 434 Practice \#1
Pg. 436 \#1-6 (skip 4)
Reaction Quotient (7.5) Pg. 451 Practice \#1-3

Worksheet

Equilibrium Law quantitatively describes

 the equilibrium position of a system.For the reaction $\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{c} \mathbf{C}+\mathrm{dD}$,

Equilibrium
constant
(NO UNITS)

- All concentrations AT EQUILIBRIUM (mol/L)
- Exponents from balanced chemical equation

Practice 1: Write equilibrium law equations for the reactions:
a) $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}$
b) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$

For a given reaction carried out at the same temperature,
the value of K is CONSTANT.

- regardless of initial concentrations

Experiment	Initial Concentrations	Equilibrium Concentrations	$K=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
I	$\begin{aligned} & {\left[\mathrm{N}_{2}\right]_{0}=1.000 \mathrm{M}} \\ & {\left[\mathrm{H}_{2}\right]_{0}=1.000 \mathrm{M}} \\ & {\left[\mathrm{NH}_{3}\right]_{0}=0} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{N}_{2}\right]=0.921 \mathrm{M}} \\ & {\left[\mathrm{H}_{2}\right]=0.763 \mathrm{M}} \\ & {\left[\mathrm{NH}_{3}\right]=0.157 \mathrm{M}} \end{aligned}$	$K=6.02 \times 10^{-2}$
II	$\begin{aligned} & {\left[\mathrm{N}_{2}\right]_{0}=0} \\ & {\left[\mathrm{H}_{2}\right]_{0}=0} \\ & {\left[\mathrm{NH}_{3}\right]_{0}=1.000 \mathrm{M}} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{N}_{2}\right]=0.399 \mathrm{M}} \\ & {\left[\mathrm{H}_{2}\right]=1.197 \mathrm{M}} \\ & {\left[\mathrm{NH}_{3}\right]=0.203 \mathrm{M}} \end{aligned}$	$K=6.02 \times 10^{-2}$
III	$\begin{aligned} & {\left[\mathrm{N}_{2}\right]_{0}=2.00 \mathrm{M}} \\ & {\left[\mathrm{H}_{2}\right]_{0}=1.00 \mathrm{M}} \\ & {\left[\mathrm{NH}_{3}\right]_{0}=3.00 \mathrm{M}} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{N}_{2}\right]=2.59 \mathrm{M}} \\ & {\left[\mathrm{H}_{2}\right]=2.77 \mathrm{M}} \\ & {\left[\mathrm{NH}_{3}\right]=1.82 \mathrm{M}} \end{aligned}$	$K=6.02 \times 10^{-2}$

Example 1.

Sulfur dioxide and oxygen combine to form sulfur trioxide:

At $600^{\circ} \mathrm{C}$, the following
results are collected:

$$
2 \mathrm{SO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}
$$

a)Write the equilibrium law equation

- $\mathrm{K}=$ [products]/[reactants]
- use coefficients to find exponents
b) Calculate the value of K
- plug in concentrations at equilibrium
- K is unitless

Initial	Equilibrium
$\left[\mathrm{SO}_{2}\right]_{0}=2.00 \mathrm{M}$	$\left[\mathrm{SO}_{2}\right]=1.50 \mathrm{M}$
$\left[\mathrm{O}_{0}\right]_{0}=1.50 \mathrm{M}$	$\left[\mathrm{O}_{2}\right]=1.25 \mathrm{M}$
$\left[\mathrm{SO}_{3}\right]_{0}=3.00 \mathrm{M}$	$\left[\mathrm{SO}_{3}\right]=3.50 \mathrm{M}$

$$
\begin{aligned}
\mathrm{K} & =\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]} \\
\mathrm{K} & =\frac{[3.50]^{2}}{[1.50]^{2}[1.25]}=4.36
\end{aligned}
$$

$$
\begin{array}{ll}
{\left[\mathrm{SO}_{2}\right]_{0}=2.00 \mathrm{M}} & {\left[\mathrm{SO}_{2}\right]=1.50 \mathrm{M}} \\
{\left[\mathrm{O}_{2}\right]_{0}=1.50 \mathrm{M}} & {\left[\mathrm{O}_{2}\right]=1.25 \mathrm{M}} \\
{\left[\mathrm{SO}_{3}\right]_{0}=3.00 \mathrm{M}} & {\left[\mathrm{SO}_{3}\right]=3.50 \mathrm{M}}
\end{array}
$$

The value of K for the reverse process:

$$
2 \mathrm{SO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}
$$

$$
\begin{gathered}
2 \mathrm{SO}_{2(\mathrm{~g})}+\frac{\text { Forward: }}{\mathrm{O}_{2(\mathrm{~g})}} \rightarrow 2 \mathrm{SO}_{3(\mathrm{~g})} \\
\mathrm{K}_{\mathrm{f}}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}
\end{gathered}
$$

$$
\begin{gathered}
2 \mathrm{SO}_{3(\mathrm{~g})} \rightarrow \frac{\text { Reverse: }}{2 \mathrm{SO}_{2(\mathrm{~g})}}+\mathrm{O}_{2(\mathrm{~g})} \\
\mathrm{K}_{\mathrm{r}}=\frac{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{SO}_{3}\right]^{2}}
\end{gathered}
$$

$$
\mathrm{K}_{\mathrm{r}}=\frac{1}{\mathrm{~K}_{\mathrm{f}}} \quad \begin{aligned}
& \text { At } 600^{\circ} \mathrm{C}, \\
& \mathrm{~K}_{\mathrm{f}}=4.36 \\
& \therefore \mathrm{~K}_{\mathrm{r}}=\frac{1}{4.36}=0.229
\end{aligned}
$$

What does K tell you?

- The value of K indicates how far the forward reaction proceeds to completion.
- It does NOT tell you how QUICKLY the reaction proceeds
- we addressed this with rate laws in Ch. 6
- unfortunately - two constants, same letter - don't get them confused!
- However, equilibrium constant K can be derived from the rate constants, k, for the forward and reverse reactions
- see pg. 432 of your text

The magnitude of K indicates the extent to which the forward reaction proceeds to completion.

$$
\mathrm{K}=\frac{\text { [products }]}{[\text { reactants }]}
$$

$K \ll 1$

At equilibrium, concentrations of reactants exceeds products.

Equilibrium lies far to left (very few products)
$K \gg 1$
At equilibrium, concentrations of products exceeds reactants.

Equilibrium lies

Learning Checkpoint

- The Equilibrium Law states that for a reaction at a given temperature, the RATIO of [product] to [reactant] will always be the same.
- Measured quantitatively using the equilibrium constant, K.
- For the reaction $\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}$, the equilibrium law equation is

$$
\mathbf{K}=\frac{[C]^{c}}{[A]^{a}[B]^{b}}
$$

- The magnitude of K indicates how far the reaction proceeds to completion.
- K >> 1 ... Reaction proceeds towards completion. Products are favoured.
- For the reverse process, the value of K is the reciprocal of K for the forward process: $\quad \mathbf{K}_{\mathbf{r}}=\mathbf{K}_{\mathbf{f}}{ }^{\mathbf{- 1}}$

K equations depend on the type of equilibrium system.

- Homogeneous equilibria -

Equilibrium systems involving reactants and products that are all in the same state

- $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}$

$$
\mathrm{K}=\frac{\left[\mathrm{SO}_{3} \mathrm{~g}^{\prime}\right]^{2}}{\left[\mathrm{SO}_{2} \mathrm{~g}_{\mathrm{g}}\right]^{2}\left[\mathrm{O}_{2(\mathrm{~g})}\right]}
$$

- Heterogeneous equilibria -

Involve reactants and products in at least
two different states
$-\mathrm{CaCO}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2(\mathrm{~g})}$

- Pure solids and liquids have constant concentrations: their concentrations can't change
- As such, concentrations of solid and liquid entities are NOT INCLUDED in an equilibrium law equation.
- See pg. 432 for mathematical logic

Practice

Write the equilibrium law expression for the reaction

$$
\mathrm{PCl}_{5(\mathrm{~s})} \rightleftharpoons \mathrm{PCl}_{3(\mathrm{l})}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

Learning Checkpoint

- When writing a rate law equation for a heterogeneous equilibrium system, concentrations of pure solids and liquids are always omitted.

Homework

- Pg. 431 Practice \#1-3
- Pg. 434 Practice \#1
- Pg. 436 \#1-6 (skip 4)

Calculating the Reaction Quotient (Q)
will tell you whether a system is at equilibrium.

- Calculated in the same way as K
- BUT uses instantaneous concentrations instead of equilibrium concentrations

$$
\mathrm{Q}=\frac{[\text { products at instant } t]}{[\text { reactants at instant } t]}
$$

$$
\mathrm{K}=\frac{[\text { products at equilibrium }]}{[\text { reactants at equilibrium }]}
$$

If $\mathbf{Q}=\mathrm{K}$, then the system is at equilibrium.

Example 2. $\quad \mathbf{N}_{\mathbf{2}} \mathbf{+} \mathbf{3} \mathbf{H}_{\mathbf{2}} \rightleftharpoons \mathbf{2} \mathbf{N H}_{\mathbf{3}}$

For the synthesis of ammonia, the expression for the reaction quotient, Q is:

$$
Q=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}
$$

For this reaction at $500^{\circ} \mathrm{C}$, it is known the equilibrium constant, $\mathrm{K}=\mathbf{6 . 0} \times 10^{-\mathbf{2}}$.
In a system at $500^{\circ} \mathrm{C}$, these concentrations are measured:

$$
\begin{aligned}
{\left[\mathrm{NH}_{3}\right] } & =1.0 \times 10^{-3} \mathrm{M} \\
\mathrm{Q} & =\frac{\left(\mathrm{N}_{2}\right]=1.0 \times 10^{-5} \mathrm{M}}{(1.0 \times 10-5)(2.0 \times 10-3)^{3}}=1.3 \times 10^{7}
\end{aligned}
$$

Since $Q \neq K$, the system is NOT at equilibrium.

If not at equilibrium, the system will "shift" until it reaches equilibrium concentrations.

$$
\mathrm{Q}=\frac{[\text { products at instant } t]}{[\text { reactants at instant } t]}
$$

Given: Equilibrium Constant, $\mathrm{K}=6.0 \times 10^{-2}$
Found: Reaction quotient, $\mathrm{Q}=1.3 \times 10^{7}$
a) Which entities - reactants or products are in excess?
b) The system will continue to move towards equilibrium In which direction - left or right will the system shift?

Summary

- The value of the equilibrium constant, K , is the always same for a chemical reaction at a given temperature.
- Indicates extent to which forward reaction is favoured
- The value of the reaction quotient, Q, is compared to K.
- When $\mathrm{Q}=\mathrm{K}$, the system is at equilibrium
- If $Q \neq K$, the system will continue to proceed towards equilibrium. The direction will be dictated by the value of K .

