

Foodology.ca	Ever add too much hot chocolate mix to your water?	Lots	HIGH solubility s of solute can dissolve irated, equilibrium lies far right		LOW solubility Very little solute can dissolve When saturated, equilibrium lies far left	
		The saturation point depends on the identity of the ionic compound. Pg. 465	Anions	high solubility ≥ 0.1 mol/L at SATP	low solubility < 0.1 mol/L at SATP	
			F-	most	Li*, Mg ^{2*} , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Fe ²⁺ , Hg ²⁺ , Pb ²⁺	
			CI-, Br-, I-	most	Ag ⁺ , Pb ²⁺ , TI ⁺ , Hg ₂ ²⁺ , Hg ⁺ , Cu ⁺	
			S ²⁻	Group 1, Group 2, NH ₄ *	most	
			OH-	Group 1, NH4+, Sr2+, Ba2+, TI	+ most	
			S04 ²⁻	most	Ag ⁺ , Pb ²⁺ , Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Ra ²⁺	
			C032-, P043-, S032-	Group 1, NH4"	most	
			C2H2O2-	most	Ag*	
			N03	all	none	
			10,3-	NH4+, K+, Na+	most	
			1			

The solubility of a compound can be expressed quantitatively.

Mass solubility:

maximum mass of solute (g) 100 mL of solution (100 mL)

Molar solubility: ...is the molar

concentration of the solution when

saturated


maximum moles of solute (mol) L of solution (L)

3.43 mol AICI₃ L of solution

45.8 g AICI₃

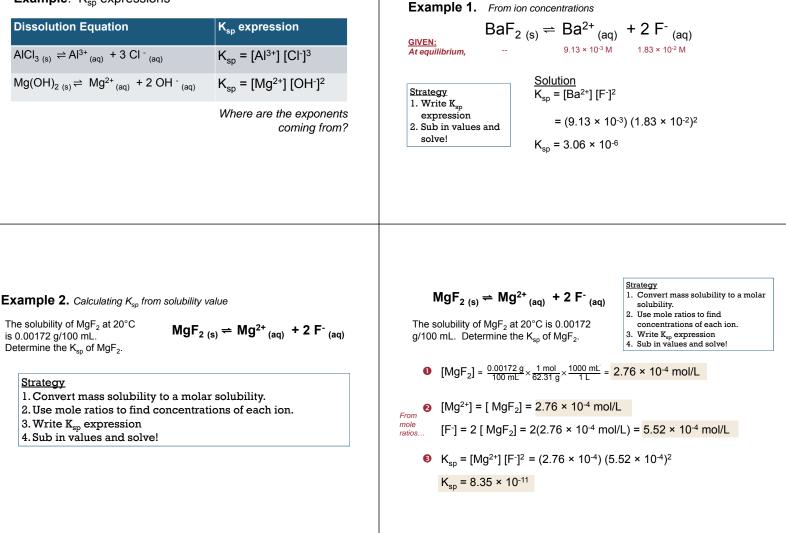
100 mL of solution

Solubility is temperature dependent!

- · For a solid solute in an aqueous solution, the processes of dissolution and precipitation are occurring simultaneously. • Solid solute = Aqueous ions
- When rate_{dissolution} = rate_{precipitation}, the system is at equilibrium. At this point, the solution is saturated.
 - Once the solution is saturated, the addition of more ions will shift the equilibrium to the LEFT. This causes a precipitate to form.

Agl
$$_{(s)} \Rightarrow$$
 Ag⁺ $_{(aq)}$ + I⁻ $_{(aq)}$

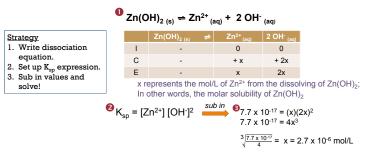
Since dissolution is an equilibrium process, we can write an equilibrium law expression:


 $K_{sp} = [Ag^+] [I^-]$ $\frac{\mathbf{K}_{sp}}{\text{The equilibrium constant for a}}$

dissolution process

Where did [AgI] go??

Example. K_{sp} expressions


Calculating K_{sp}

Name	Formula	κ.	
barium carbonate	BaCO_00	2.6 × 10 ⁻⁴	
barium chromate	BaCrO ₄ (t)	1.2×10^{-10}	
barium sulfate	BaS0,(0	1.1 × 10 ⁻¹⁸	
calcium carbonate	CaCO ₂ (t)	5.0 × 10 ⁻⁸	
calcium hydroxide	CatOHig	5.5×10^{-6}	
calcium exalate	CaC ₂ O ₄ (x): CaOOCCOO(x)	2.3 × 10 ⁻⁴	
calcium phosphate	Ca ₂ (PO ₂) ₂ (t)	2.1 × 10 ⁻¹⁰	
calcium sulfate	CaSO_(1)	7.1×10^{-6}	
copper(I) chloride	CuCl(s)	1.7×10^{-1}	
copper(I) iodide	Curito	1.3×10^{-12}	
copper(8) iodate	Cu(IO_2)_(1)	6.9×10^{-6}	
copper(l) suffide	CuSto)	6.0 × 10 ⁻³⁷	
iron@ hudmaide	FeiCHILIN	48 × 10 ⁻¹¹	

Example 3. Calculating solubility from K_{sp}

Calculate the molar solubility of zinc hydroxide at 25°C, where $K_{so} = 7.7 \times 10^{-17}$.

You can find a table of reference K_{sp} values on

(Appendix B4)

päge 725

- The equilibrium constant for a dissolution equation has a special name: K_{sp} The Solubility Product Constant
 calculated the same way as a "regular" K

 - · since solids aren't included in K expressions,
 - ends up as $K_{sp} = [ion^+]^m [ion^-]^n$
- To calculate the value of $K_{\rm sp^{\prime}}$ use ion concentrations of the saturated solution.
 - since saturated solution is at solubility equilibrium

Homework

- Solubility and K_{sp}
- Pg. 462 #1-3
- Pg. 464 #1-4