The story so far... · Dissolution and Precipitation are opposite processes, which occur Solubility Equilibrium simultaneously in an aqueous solution. Section 7.6 · Only SATURATED solutions are in a state of solubility equilibrium, where rate_{dissolution} = rate_{precipitation}. • Unsaturated solutions are NOT at equilibrium Homework Precipitation Adding more solute to a saturated solution will cause rate_{precipitation} to ↑; Pg. 468 #1-4 solid precipitate will form. Common Ion Effect Pg. 470 #1-3 · For a dissolution process, the equilibrium constant is called the Pa. 471 #1-11 solubility product constant, K_{sp}. • K_{sp} = [ion 1]^m [ion 2]ⁿ (from last class' example) $MgF_{2 (s)} \rightleftharpoons Mg^{2+}_{(aq)} + 2 F^{-}_{(aq)}$ For solubility equilibria, the reaction quotient (Q) is called the trial ion product. $K_{sp} = [Mg^{2+}] [F^-]^2 = (2.76 \times 10^{-4}) (5.52 \times 10^{-4})^2$ It can be used to predict whether a precipitate will form. Concentrations at equilibrium K_{sp} = 8.35 × 10⁻¹¹ $Q < K_{sp}$ System is unsaturated. It could hold more solute ions. If the solution was UNSATURATED, $Q = K_{sp}$ System is at equilibrium. It is exactly saturated. [Mg²⁺] < 2.76 × 10⁻⁴ mol/L No precipitate will form. **Q** = [Mg²⁺] [F⁻]² < 8.35 × 10⁻¹¹ [F-] < 5.52 × 10-4 mol/L $Q > K_{sp}$ System is saturated. There are higher concentrations of ions than can be dissolved. A solid precipitate will form. Reaction quotient - that value you calculate to TEST whether the system is at equilibrium

Practice. Will a precipitate of $PbSO_{4(s)}$ form? At the temperature in question, K_{sp} for $PbSO_{4(s)}$ is 1.8 x 10⁻⁸.

[Pb ²⁺ _(aq)]	[SO ₄ ²⁻ (aq)]	Q = [Pb ²⁺] [SO ₄ ²⁻]	Precipitate?
5.74 x 10⁻⁵	1.48 x 10 ⁻⁴	8.46 x 10 ⁻⁹	
6.22 x 10 ⁻⁴	3.89 x 10 ⁻³	2.42 x 10 ⁻⁶	
2.87 x 10 ⁻⁴	6.27 x 10 ⁻⁵	1.8 x 10 ⁻⁸	

Example 1. Using Q to predict precipitation.

If **100 mL of 0.100 mol/L CaCl_{2 (aq)}** and **100 mL of 0.0400 mol/L** $Na_2SO_{4 (aq)}$ are mixed at 20°C, <u>determine whether a precipitate will</u> <u>form</u>. For CaSO₄ (aq) at 20°C, K_{sp} is 3.6 ×10⁻⁵.

Means: Will a double displacement reaction happen when these solutions are mixed? If so, will ${\rm CaSO_4}$ (s) precipitate?

Strategy

- 1. Write the balanced equation for this reaction. Use solubility rules to determine products' states. (pg. 465)
- 2. Find [IONS] <u>before</u> mixing.
- 3. Use dilution formula to find [IONS] <u>after</u> mixing. ($C_2 = \frac{C_1 V_1}{V_2}$)
- 4. Calculate Q. Compare to K_{sp}. Interpret!

Practice!

Use Appendix B4 (pg. 725) to find the $K_{sp} \mbox{ of } \mbox{PbI}_2.$

• The solubility of an ionic compound may decrease when a common ion is added to the equilibrium system.

Homework

Precipitation • Pg. 468 #1-4

Common Ion Effect

• Pg. 470 #1-3

• Pg. 471 #1-11