

Strengths of the Brønsted-Lowry theory

- · More general, therefore more explanatory power
 - Explains the basic properties of solutions where solutes do NOT possess an OH- ion $(e.g.,\,\text{NH}_{3\,(aq)})$
 - Can be applied to reactions that do not occur in aqueous solutions.

According to Brønsted-Lowry theory, all acid-base reactions are reversible H⁺ exchange (proton transfer) reactions

Practice. Label the acid and base in the following reactions a) HCl + H₂O \rightleftharpoons H₃O⁺ + Cl⁻

b) PO_4^{3-} + $H_2O \rightleftharpoons HPO_4^{2-}$ + OH^{-}

c)
$$HCO_3^-$$
 + $H_3O^+ \rightleftharpoons H_2CO_3$ + OH^-

Classification as a Bronsted-Lowry acid or base is not a permanent one – it depends on the particular reaction.

• An **amphiprotic substance** is one that acts as an acid in some reactions, and as a base in another.

$$\operatorname{CO}_3^{2^-}_{(aq)} + \operatorname{H}_2^{O}_{(l)} \rightleftharpoons \operatorname{OH}_{(aq)}^- + \operatorname{HCO}_3^{-}_{(aq)}$$

- According to Bronsted-Lowry definitions,
 - An acid is a proton donor
 - A base is a proton acceptor
 - · All acid-base reactions involve a proton exchange
 - Formation of an aqueous acidic or basic solution involves a REACTION with water (vs. simple dissociation or ionization)

 $\begin{array}{rcl} \hline \mbox{Forward reaction} & HC_2H_3O_2 + H_2O & \Rightarrow & C_2H_3O_2^- + H_3O^+ \\ acid & base & conjugate \\ \hline \mbox{base} & base & conjugate \\ \hline \mbox{conjugate} & conjugate$

Conjugate acid-base pairs

- Every acidic reactant has a corresponding basic product, and vice versa.
- These corresponding acid-base pairs are called **conjugate acids** and **conjugate bases**.

Conjugate acid-base pairs differ in formula by one proton (H ⁺)
 one hydrogen
 charge of one

TABLE 6.7 Some Common Conjugate Acid-Base Pairs	
Acid	Base
H_3O^+	H ₂ O
H _z O	OH-
HCI	CI-
H_2SO_4	HSO4 ⁻
HSO ₄ -	S042-
H ₃ PO ₄	H ₂ PO ₄ -
H ₂ PO ₄ -	HPO42-
HPO42-	PO4 ³
$\rm NH_4^+$	NH ₃

Example 1. The carbonate ion, CO32-, forms a basic solution in water.

- a) Write out the balanced equation for the reaction of the carbonate ion with water.
- b) Identify the conjugate acid-base pairs.

$$CO_3^{2^-}(aq) + H_2O_{(l)} \Rightarrow OH^{-}(aq) + _$$

Example 2. Do the same for ammonium, \mathbf{NH}_{4}^{+} , which forms an acidic solution in water.

$$NH_4^+_{(aq)} + H_2O_{(I)} \approx _$$

Learning Checkpoint

- When an acid donates a proton, it forms a conjugate base.
- When a base accepts a proton, it forms a conjugate acid.
- Conjugate acid-base pairs differ in their formulas by one H⁺.

All acid-base reactions can involve a COMPETITION for protons.

The ionization of acetic acid:

$$HC_{2}H_{3}O_{2(aq)} + H_{2}O_{(l)} \stackrel{1.3\%}{\Rightarrow} C_{2}H_{3}O_{2}^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$$
$$C_{2}H_{3}O_{2}^{-} \longleftarrow H^{+} \longrightarrow H_{2}O$$

$$C_2H_3O_2^- \leftarrow H^+ \rightarrow H_2O_{acetate ion}$$

 $C_2H_3O_2^-$ has a stronger hold on the proton. Because of this, it ionizes very little (1.3%).

