The Nature of Acids and Bases

Section 8.1

Homework
Pg. 492 \#1 d-e, 2
Pg. 493 \#1
Pg. 494 \#1-9

Observable Properties

Updated Definitions: Brønsted-Lowry

An acid is a proton donor

$\mathrm{HCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(1)} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a 9)}+\mathrm{Cl}_{(\text {(aq) }}$
very similar to
Arrhenius' definition

Any substance that donates a proton to water increases the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

A base is a proton acceptor
$\mathrm{NH}_{3}\left({ }^{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(1)} \rightarrow \mathrm{NH}_{4}{ }^{+}{ }_{(a q)}+\mathrm{OH}^{-}{ }_{(\text {aq })}\right.$
more explanatory power than Arrhenius' definition

Expands Arrhenius' definition: Substances that accept protons from water increase the [OH^{-}]

Formation of an aqueous acidic or basic solution involves reaction with $\mathrm{H}_{2} \mathrm{O}$.

Example 1: Sodium Hydroxide, NaOH

- NaOH is a base by Arrhenius' definition $>$ Contains an OH^{-}ion

- NaOH is also a base by B / L definition, since:
(Dissociation equation) $\quad \mathrm{NaOH}_{(\mathrm{s})} \rightleftharpoons \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\text {aq })}$,
and OH^{-}can then act as a proton acceptor:
(Example reaction)

$$
\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Example 2: Ammonia, NH_{3}

- NH_{3} is NOT an Arrhenius base
- does NOT possess an OH- ion

- but it IS a Brønsted-Lowry base:
- the lone pair on N can readily accept a H^{+}
- in an aqueous solution, this reaction produces $\mathrm{OH}^{-}{ }_{(a q)}$
- responsible for the basic properties of the solution

Strengths of the Brønsted-Lowry theory

- More general, therefore more explanatory power
- Explains the basic properties of solutions where solutes do NOT possess an OH^{-}ion (e.g., $\left.\mathrm{NH}_{3(\mathrm{qq})}\right)$
- Can be applied to reactions that do not occur in aqueous solutions.

Classification as a Bronsted-Lowry acid or base is not a permanent one - it depends on the particular reaction.

- An amphiprotic substance is one that acts as an acid in some reactions, and as a base in another.

$$
\begin{aligned}
& \underset{\text { base }}{\mathrm{CO}_{3}{ }^{2-}(\text { aq })}+\underset{\text { acd }}{\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}} \rightleftharpoons \mathrm{OH}^{-}{ }_{(\text {aq) }}+\mathrm{HCO}_{3^{-}(\mathrm{aq})} \\
& \underset{\text { acid }}{\mathrm{NH}_{4}{ }_{(\text {(aq })}}+\underset{\text { base }}{\mathrm{H}_{2} \mathrm{O}_{(1)}} \rightleftharpoons+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {(aq) }}+\mathrm{NH}_{3(\text { aq })}
\end{aligned}
$$

According to Brønsted-Lowry theory, all acid-base reactions are reversible H^{+}exchange (proton transfer) reactions

Practice. Label the acid and base in the following reactions
a) $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
b) $\mathrm{PO}_{4}{ }^{3-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}{ }^{2-}+\mathrm{OH}^{-}$
c) $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-}$

Learning Checkpoint

- According to Bronsted-Lowry definitions,
- An acid is a proton donor
- A base is a proton acceptor
- All acid-base reactions involve a proton exchange
- Formation of an aqueous acidic or basic solution involves a REACTION with water (vs. simple dissociation or ionization)

Conjugate acid-base pairs

- Every acidic reactant has a corresponding basic product, and vice versa.
- These corresponding acid-base pairs are called conjugate acids and conjugate bases.

\qquad

Conjugate acid-base pairs differ in formula by one proton $\left(\mathrm{H}^{+}\right)$

- one hydrogen
- charge of one

TABLE 6.7 Some Common
Conjugate Acid-Base Pairs
Acid
$\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{H}_{2} \mathrm{O}$
HCl
$\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{HSO}_{4}{ }^{-}$
$\mathrm{H}_{3} \mathrm{PO}_{4}$
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$
$\mathrm{HPO}_{4}{ }^{2-}$
$\mathrm{NH}_{4}{ }^{+}$
Cl^{-}

Example 1. The carbonate ion, $\mathrm{CO}_{3}{ }^{\mathbf{2}-}$, forms a basic solution in water.
a) Write out the balanced equation for the reaction of the carbonate ion with water.
b) Identify the conjugate acid-base pairs.

$$
\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{OH}_{(\mathrm{aq})}^{-}+
$$

\qquad

Example 2. Do the same for ammonium, $\mathbf{N H}_{\mathbf{4}}{ }^{\mathbf{+}}$, which forms an acidic solution in water.
$\mathrm{NH}_{4}{ }^{+}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons$ \qquad $+$ \qquad

All acid-base reactions can involve a COMPETITION for protons.

The ionization of acetic acid:

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l},} \stackrel{1.3 \%}{=} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}
$$

$$
\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \leftarrow-=-\underset{\text { acetate ion }}{ }+\underset{\substack{\text { water } \\ \text { wat }}}{\mathrm{H}_{2} \mathrm{O}}
$$

The ionization of hydrochloric acid:

$$
\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \xrightarrow{99 \%} \mathrm{Cl}_{(\mathrm{aq})}^{-}+\mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}
$$

Who has the stronger pull on the proton?

Weak acids form a dynamic equilibrium with their conjugate bases.

by representing
(omit $\mathrm{H}_{2} \mathrm{O}$)
$\mathrm{HA}_{(\mathrm{aq})} \rightleftharpoons \quad \mathrm{H}^{+}{ }_{(\mathrm{aq})} \quad+$ conjugate
base
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$

Based on how well it ionizes in water, an acid can be classified as strong or weak.

- strong acids: ionize completely (100\%)
- $\mathrm{HCl}, \mathrm{HI}, \mathrm{HBr}, \mathrm{HClO}_{4}$ $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}$
- weak acids: partial ionization; some still exists in molecular form
- e.g., $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (acetic acid)

You must MEMORIZE the strong acids!

Example. Writing a K_{a} expression

Write a K_{a} expression for acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (aq)

Strategy

1. Write the equilibrium reaction equation. Simplify the scenario by treating it as a simple ionization (instead of a reaction with water)
2. Write the K_{a} expression - don't forget the subscript!
${ }^{0} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}(\mathrm{aq})$
(2) $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}$

Practice

Write a K_{a} expression for chloracetic acid, $\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{Cl}{ }_{(\text {aq) }}$

Learning Checkpoint

- A weak acid is one that does not react (ionize) completely.
- forms an equilibrium with its conjugate base
- The equilibrium law constant for an acid ionization is called the acid dissociation constant, K_{a}.
- For the general acid ionization reaction

$$
\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}, \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

