Strong and Weak Acids and Bases; pH and pOH calculations

Section 8.2

Recall from last class...

An acid is a substance that donates protons. Forming an acid solution involves a reaction with water:

$$
\mathrm{HA}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{A}^{-}{ }_{(\mathrm{aq})}
$$

Which can be simplified by representing it as an ionization:

$$
\left(\mathrm{Omit}_{\left.\mathrm{H}_{2} \mathrm{O}\right)} \quad \mathrm{HA}{ }_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{A}^{-}{ }_{(\mathrm{aq})}\right.
$$

$$
\mathrm{HA}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{A}_{(\mathrm{aq})}^{-}
$$

A strong acid is one that ionizes completely.

- equilibrium lies far to the right
- essentially goes to completion
- often represent the ionization with a single-headed arrow

A weak acid is one that does NOT ionize completely.

- ions form a dynamic equilibrium with the un-ionized form
acid ionization constant, $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$

$$
\mathrm{K}_{\mathrm{a}}
$$ is large K_{a} is small

Stronger acids have higher concentrations of free ions:

- higher conductivity
- higher reactivity

Which of these is vinegar (acetic acid), and which is hydrochloric acid, HCl ?

Strength \neq Concentration!

- two separate concepts
- though both do affect amount of ions in solution
- a strong acid may either concentrated or dilute:
- $0.1 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ -
dilute solution of a strong acid
- $12 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ -
concentrated solution of strong acid

Bases can be described in the same way.

Strong bases dissociate completely (100%) in aqueous solutions.

- all hydroxides of Group 1 and 2 elements

$$
\begin{aligned}
& \underset{1.0 \mathrm{~mol}}{\mathrm{NaOH}}{ }_{(\mathrm{aq})} \rightarrow \underset{1.0 \mathrm{~mol}}{\mathrm{Na}^{+}}{ }_{(\mathrm{aq)}}+\underset{1.0 \mathrm{~mol}^{(a q)}}{\mathrm{OH}^{-}} \\
& \underset{1.0 \mathrm{~mol}}{\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})}} \rightarrow \underset{1.0 \mathrm{~mol}^{\mathrm{Ca}^{2+}}{ }_{(\mathrm{aq})}}{\text { }}+\underset{2.0 \mathrm{~mol}^{2} \mathrm{OH}^{-}}{ }{ }_{(\mathrm{aq})}
\end{aligned}
$$

Weak bases only partially react with water to produce OH^{-}ions.

- Bronsted-Lowry bases

$$
\underset{\substack{1.0 \mathrm{~mol}}}{\mathrm{NH}_{3(\mathrm{aq})}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}^{\stackrel{0.42 \%}{\rightleftharpoons}} \underset{\substack{\text { (aq) }}}{\stackrel{0.0042 \mathrm{~mol}}{\mathrm{NH}_{4}^{+}}+\underset{(\mathrm{aq})}{0.0042 \mathrm{~mol}}}
$$

Just like with weak acids, a dynamic equilibrium is reached between the forward and reverse reactions.

Learning Checkpoint: Strong and Weak Bases

- Just like acids, bases can be classified as strong or weak, depending on how completely they react with water to produce OH^{-}ions.
- For the generalized reaction of a base with water,

$$
\mathrm{B}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{BH}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}
$$

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
$$

For the generalized reaction of a base with water,

$$
\mathrm{B}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{BH}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}
$$

an equilibrium constant (the base ionization constant) can be calculated:

Water naturally undergoes an ionization process:

This process is called autoionization.

- less than 2 water molecules in one billion will autoionize
- occurs in pure water and all aqueous solutions
- equation is often simplified:

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}
$$

For the reaction

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq}),}
$$

the equilibrium law is

$$
\begin{aligned}
\mathrm{K}_{\mathrm{w}} & =\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& =1.0 \times 10^{-14} \quad \text { at SATP }
\end{aligned}
$$

K_{w} : Ion Product
Constant for Water

The ion product constant for water has a value of $\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$ (SATP conditions).

In pure water, $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$are produced in a 1:1 ratio, therefore $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$.

Let $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$be x

$$
\begin{array}{rlrl}
\mathrm{K}_{\mathrm{w}} & =\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] & & \\
1.0 \times 10^{-14} & =x^{2} & & \text { In pure water, the concentration of } \\
1.0 \times 10^{-7} \mathrm{~mol} / \mathrm{L} & =x & & {\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{~mol} / \mathrm{L},} \\
\text { due to the autoionization of water. }
\end{array}
$$

Dissolving an acid or a base in water will alter these concentrations of $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$, but their product will always be constant $\left(\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}\right)$.

Example 1. A $0.15 \mathrm{~mol} / \mathrm{L}$ solution of $\mathrm{HCl}_{(\mathrm{aq})}$ is found to have a hydrogen ion concentration of $0.15 \mathrm{~mol} / \mathrm{L}$. Calculate the hydroxide ion concentration.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& 1.0 \times 10^{-14}=(0.15)\left[\mathrm{OH}^{-}\right] \\
&(\text {sub in) } \quad 1.0
\end{aligned}
$$

Example 2. Calculate the hydrogen ion concentration in a $0.025 \mathrm{~mol} / \mathrm{L}$ solution of barium hydroxide, a strong base.

```
Strategy
1. Write the dissociation
    equation for this base, and
    determine [OH-
2. Use K}\mp@subsup{\textrm{K}}{\textrm{w}}{}\mathrm{ to solve for [H+}
```

$$
\begin{aligned}
& \underset{0.025 \mathrm{~mol} / \mathrm{L}}{\mathrm{Ba}(\mathrm{OH})_{2(a)}} \rightleftharpoons \mathrm{Ba}^{2+}{ }_{(\mathrm{aq})}+\underset{0.050 \mathrm{~mol}^{(\mathrm{Laq})}}{2 \mathrm{OH}^{-}} \\
& \text {From the molar ratio, } \\
& {\left[\mathrm{OH}^{-}\right]=2\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]=2(0.025)=0.050 \mathrm{M}} \\
& { }^{2} \mathrm{~K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& 1.0 \times 10^{-14}=\left[\mathrm{H}^{+}\right](0.050) \\
& 2.0 \times 10^{-13} \mathrm{~mol} / \mathrm{L}=\left[\mathrm{H}^{+}\right]
\end{aligned}
$$ acetic acid in water

For the reaction of th
$\begin{aligned} & \text { For the reaction of the } \\ & \text { conjugate base of acetic } \\ & \text { acid }\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right) \text {with water, }\end{aligned} \underset{\text { conjugate }}{\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} \xrightarrow{\mathrm{K}_{\mathrm{b}}=}$
$\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]$
base
$\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]} \times \frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}$
$\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}$
The product of the K_{a} of an acid
and the K_{b} of its conjugate base is
equal to the water ionization
constant, $\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$.

$$
\mathrm{K}_{\mathrm{a}} \mathrm{~K}_{\mathrm{b}}=\left(1.7 \times 10^{-5}\right)\left(5.9 \times 10^{-10}\right)
$$

$$
\mathrm{K}_{\mathrm{a}} \mathrm{~K}_{\mathrm{b}}=1.0 \times 10^{-14}
$$

The product of the K_{a} of an acid and the K_{b} of its conjugate base is equal to the water ionization constant, $\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$.

Example 3.

The $\mathrm{HPO}_{4}{ }^{2-}$ ion is a weak acid with a K_{a} of 1.3×10^{-13} at SATP.
a) Write the ionization equation for $\mathrm{HPO}_{4}{ }^{2-}$ and identify its conjugate base.
b) Calculate the K_{b} for the conjugate base.

Practice. Pg. 502 \#1, 2

1. K_{a} for ammonium ion $\left(\mathrm{NH}_{4}^{+}\right)$is 5.8×10^{-10}. Find the K_{b} of NH_{3}. Ans: 1.7×10^{-5}
2. K_{b} for the fluoride ion $\left(\mathrm{F}^{-}\right)$is 1.5×10^{-11}. Find the K_{a} of HF .

Ans: 6.7×10^{-4}

The pH value of a solution measures the concentration of hydrogen ions.

Acids have
HIGH concentrations of $\left[\mathrm{H}^{+}\right]$
This means they have
LOW pH values.

Bases have LOW concentrations of $\left[\mathrm{H}^{+}\right]$

This means they have HIGH pH values.

Example 4. A solution of NaOH has a $\left[\mathrm{H}^{+}\right]$of $5.2 \times 10^{-11} \mathrm{~mol} / \mathrm{L}$. What is the pH of this solution?

The number of DECIMAL PLACES in the log must equal the number of significant figures in the original value

Check:

$\left[\mathrm{H}^{+}\right]=10-\mathrm{pH}$
$=10^{-10.28}$
$\left[\mathrm{H}^{+}\right]=5.2 \times 10^{-11} \mathrm{~mol} / \mathrm{L}$

Solution

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left(5.2 \times 10^{-11}\right) \\
\mathrm{pH} & =10.28 \\
& \text { two sig figs } \\
& \text { two decimals }
\end{aligned}
$$

Learning Checkpoint: $\mathrm{K}_{\mathrm{w}}, \mathrm{K}_{\mathrm{a}}$, and K_{b}

- Water spontaneously reacts with itself, undergoing autoionization: $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}^{+}{ }_{(\text {aq })}+\mathrm{OH}^{-}{ }_{(\text {aq })}$
- For this reaction, $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$ at SATP
- The value of Kw can be used to relate the Ka of an acid with the Kb of its conjugate base:

$$
\begin{aligned}
\mathrm{K}_{\mathrm{w}} & =\mathrm{K}_{\mathrm{a}} \mathrm{~K}_{\mathrm{b}}=1.0 \times 10^{-14} \\
\mathrm{~K}_{\mathrm{a}} & =\frac{1.0 \times 10-14}{\mathrm{~K}_{\mathrm{b}}} \quad \mathrm{~K}_{\mathrm{b}}=\frac{1.0 \times 10-14}{\mathrm{~K}_{\mathrm{a}}}
\end{aligned}
$$

The pOH of a solution measures its concentration of hydroxide ions:

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]
$$

For all aqueous solutions at SATP
..and interestingly enough..

$$
\mathrm{pH}+\mathrm{pOH}=14.00
$$

Example 5. The pH of the NaOH solution in Example 4 was calculated to be 10.28 . What is its pOH ?

Solution

$$
\begin{aligned}
\mathrm{pH}+\mathrm{pOH} & =14.00 \\
\mathrm{pOH} & =14.00-10.28=3.72
\end{aligned}
$$

Practice. Pg. 505 \#1
Calculate the pOH of a solution that has a pH of 4 .

Learning Checkpoint: pH and pOH

For an aqueous solution,
$\Rightarrow \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$>\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$>\mathrm{pH}+\mathrm{pOH}=14.00$

Homework

Pg. 504 \#2, 3
Pg. 508 \#1-4
Pg. 509 \#1-9

