Types of Calculations

Calculations Involving Acids

Section 8.4
Homework
Pg. 516 \#2
Pg. 520 \#1, 2
Pg. 521 \#1, 2
Pg. 524 \#1, 2
Pg. 525 \#1-10a

- K_{a}
$\cdot \mathrm{pH}$
- \% ionization
...or some combination of all of the above!

Solutions of Strong Acids

Complete ionization occurs:
$\underset{\substack{\text { (before ionization) } \\ 1.0 \mathrm{~mol}}}{\mathbf{H} \mathbf{i}} \stackrel{\substack{\text { (after ionization) } \\ 1.0 \mathrm{~mol}}}{\mathbf{H}^{+}}+\underset{\substack{\text { (after ionization) } \\ 1.0 \mathrm{~mol}}}{\mathbf{A}^{-}}$

Therefore, $[\mathrm{HA}]=\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]$

Example 1. Find the $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$ and pOH of a $0.042 \mathrm{~mol} / \mathrm{L} \mathrm{HNO}_{3(\mathrm{aq})}$ solution.

This reaction proceeds according to the equation:

$$
\mathrm{HNO}_{3(\mathrm{aq)}} \rightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{NO}_{3^{-}(\mathrm{aq})}
$$

Example 1. Find the $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right]$, pH and pOH of a $0.042 \mathrm{~mol} / \mathrm{L}$ $\mathrm{HNO}_{3(\mathrm{aq})}$ solution.

Ignore process (2) because K_{a} of HNO_{3} is so much larger
$\therefore \mathrm{HNO}_{3}$ is a much stronger acid; contribution of $\mathrm{H}_{2} \mathrm{O}$ is negligible

Example 1. Find the $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right]$, pH and pOH of a $0.042 \mathrm{~mol} / \mathrm{L}$ $\mathrm{HNO}_{3(\mathrm{aq})}$ solution.
(1) Find $\left[\mathrm{H}^{+}\right]$

Since HNO_{3} is a strong acid,
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{HNO}_{3}\right]=0.042 \mathrm{M}$
(2) Find pH
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.042)$
$\mathrm{pH}=1.38$

Strategy for strong acid

 calculations:1. Assume that $\left[\mathrm{H}^{+}\right]=[\mathrm{HA}]$
2. Perform necessary calculations using $\left[\mathrm{H}^{+}\right]$
BFind pOH
$\mathrm{pH}+\mathrm{pOH}=14.00$
$\mathrm{pOH}=14.00-\mathrm{pH}$
$\mathrm{pOH}=14.00-1.38$
$\mathrm{pOH}=12.62$
4 (4) Find OOH^{-1}
$[\mathrm{OH}]=10^{-\mathrm{POH}}$
$=10^{-12.62}$
$[\mathrm{OH}]=2.4 \times 10^{-13} \mathrm{~mol} / \mathrm{L}$

Practice

Pg. 513 \#1, 2

1. Find $\left[\mathrm{OH}^{-}\right]$of a $0.0700 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ solution. Ans: $1.43 \times 10^{-13} \mathrm{M}$
2. A $2.00-\mathrm{L} \mathrm{HBr}$ solution contains 0.070 mol of acid. Find pH and pOH . Ans: $\mathrm{pH}=1.46, \mathrm{pOH}=12.54$

Solutions of Weak Acids

Weak acids only partially ionize in water.

- Percent ionization describes how much of the original acid ionizes to produce H^{+}.

For the general weak acid ionization reaction $\quad \mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}$
$\%$ ionization $=\frac{\left[\mathrm{H}^{+}\right]}{[\mathrm{HA}]_{0}} \times 100 \%$
where $\left[\mathrm{H}^{+}\right]$is the concentration of ionized acid, and $[\mathrm{HA}]_{0}$ is the initial acid concentration.

Example 2. Finding \% Ionization Using pH
Calculate the percent ionization of propanoic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$, if a $0.050 \mathrm{~mol} / \mathrm{L}$ solution has a pH of 2.78 .
(1) Write the ionization equation

$$
\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}
$$

(2) Use pH to find $\left[\mathrm{H}^{+}\right]$
(3) Calculate \% ionization

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=10^{-2.78}\left[\begin{array}{l}
{\left[\mathrm{H}^{+}\right]=1.7 \times 10^{-3} \mathrm{~mol} / \mathrm{L} \leftarrow \begin{array}{c}
\text { the quantity of } \mathrm{H}^{+} \\
\text {from the ionization } \\
\text { of } \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \text {. }
\end{array}} \\
\begin{array}{rl}
\% \text { ionization } & =\frac{\left[\mathrm{H}^{+}\right]}{\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]_{0}} \times 100 \%
\end{array} \\
\quad=\frac{1.7 \times 10^{-3}}{0.050} \times 100 \%
\end{array}\right.}
\end{aligned}
$$

$\%$ ionization $=3.3 \%$

Example 3. Finding K_{a} using \% Ionization

Calculate the K_{a} of hydrofluoric acid, HF , if a $0.100 \mathrm{~mol} / \mathrm{L}$ solution at equilibrium has a percent ionization of 7.8%.
(1) Write the ionization equation
(2) Write K_{a} expression
(3) Set up ICE table

	HF	H $^{+}$	F-
\mathbf{I}	0.100	0	0
\mathbf{C}	-x	+x	+x
E	$0.100-\mathrm{x}$	x	x

$$
\begin{aligned}
& \mathrm{HF} \stackrel{7.8 \%}{\longleftrightarrow} \mathrm{H}^{+}+\mathrm{F}^{-} \\
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}
\end{aligned}
$$

Requires all concentrations at equilibrium
$0.100-x \quad x \quad x$

Given: \% ionization $=7.8 \%$
RTF: K_{a}
(4) Use \% ionization to find $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{F}^{-}\right]$
(5) Use x to find [HF]
(6) Plug values into K_{a}

	HF	\mathbf{H}^{+}	\mathbf{F}^{-}
\mathbf{I}	0.100	0	0
\mathbf{E}	$0.100-\mathrm{x}$	x	x
	$0.0922 \mathrm{~mol} / \mathrm{L}$	$0.0078 \mathrm{mol/L}$	$0.0078 \mathrm{mol/L}$

Example 4. Calculating the pH of a weak acid solution

Calculate the hydrogen ion concentration and pH of a $0.10 \mathrm{~mol} / \mathrm{L}$ acetic acid solution. K_{a} is 1.8×10^{-5}.
(1) Write the ionization equation

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}
$$

(2) Consider all major entities,
and reactions that contribute to pH .

Major entities in solution: $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \quad \mathrm{H}^{+} \quad \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \quad \mathrm{H}_{2} \mathrm{O}$

Contributing reactions:

$$
\begin{array}{ll}
\text { (1) } \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} & \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5} \\
\text { (2) } \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{O}^{-} & \mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}
\end{array}
$$

3 Set up ICE table

	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	H^{+}	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$
I	0.10	0	0
C	-x	+x	+x
E	$0.10-\mathrm{x}$	x	x

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}
$$

(4) Use K_{a} to solve for x

$$
\begin{array}{rlr}
1.8 \times 10^{-5}=\frac{\left(x^{2}\right)}{(0.10-x)} & \frac{0.10}{K_{a}} \gg 100 \\
1.8 \times 10^{-5} \cong \frac{\left(x^{2}\right)}{(0.10)} & \\
& \\
x^{2} \cong 1.8 \times 10^{-6} & & \\
x \cong 1.3 \times 10^{-3} \mathrm{~mol} / \mathrm{L} & \begin{array}{l}
\frac{x}{0.10}=1.3 \% \\
\begin{array}{l}
\text { Assumption } \\
\text { was valid! }
\end{array}
\end{array}
\end{array}
$$

(5) Use $\left[\mathrm{H}^{+}\right]$to find pH

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

$$
\mathrm{pH}=-\log \left(1.3 \times 10^{-3}\right)=1.87
$$

Polyprotic acids have more than one ionisable proton.
e.g., phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$

$$
\begin{array}{ll}
\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} & \mathrm{K}_{\mathrm{a} 1}=7.1 \times 10^{-3} \\
\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HPO}_{4}^{2-} & \mathrm{K}_{\mathrm{a} 2}=6.3 \times 10^{-8} \\
\mathrm{HPO}_{4}{ }^{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{PO}_{4}^{3-} & \mathrm{K}_{\mathrm{a} 3}=4.2 \times 10^{-13}
\end{array}
$$

What trend do you notice for the value of each successive K_{a} ?

Example 5. Calculate the pH a $0.20 \mathrm{~mol} / \mathrm{L}$ solution of ascorbic acid, $\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}$.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a} 1}=7.9 \times 10^{-5} \\
& \mathrm{~K}_{\mathrm{a} 2}=1.6 \times 10^{-12}
\end{aligned}
$$

(1) Compare the K_{a} values:

Does the second ionization contribute much H^{+}?
(2) Write the ionization equation
(3) Consider all major entities, Major entities in solution: and reactions that contribute to pH .
$\mathrm{K}_{\mathrm{a} 2} \ll \mathrm{~K}_{\mathrm{a} 1}$
Only the first step contributes an appreciable amount of H^{+}

$$
\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HC}_{6} \mathrm{H}_{6} \mathrm{O}_{6}
$$

$\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6} \quad \mathrm{H}^{+} \quad \mathrm{HC}_{6} \mathrm{H}_{6} \mathrm{O}_{6}^{-} \quad \mathrm{H}_{2} \mathrm{O}$

Contributing reactions:
(1) $\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HC}_{6} \mathrm{H}_{6} \mathrm{O}_{6}^{-} \quad \mathrm{K}_{\mathrm{a}}=7.9 \times 10^{-5}$
(2) $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$

Summary

- Strong acids ionize completely, so $[\mathrm{H}+]$ can be obtained directly from [HA].
- For weak acids, \% ionization describes the percentage of the original acid that ionizes to produce H^{+}.
- Weak acid problems are equilibrium problems. Set up an ICE table, and apply simplifying assumptions where appropriate.
- Polyprotic acids can be treated as weak monoprotic acids, since the contribution of the second/third ionizations is so miniscule.

Homework

Pg. 516 \#2
Pg. 520 \#1, 2
Pg. 521 \#1, 2
Pg. 524 \#1, 2
Pg. 525 \#1-10a

