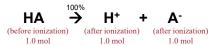
Calculations Involving Acids

Section 8.4

Homework Pg. 516 #2 Pg. 520 #1, 2 Pg. 521 #1, 2 Pg. 524 #1, 2 Pg. 525 #1-10a

Types of Calculations



- pH
- % ionization

... or some combination of all of the above!

Solutions of Strong Acids

Complete ionization occurs:

Therefore, $[HA] = [H^+] = [A^-]$

Before getting started, consider the MAJOR entities in solution:

NO₃-

 H_2O

K_a = infinitely large

= 1.0 x 10⁻¹⁴

Ignore process (2) because

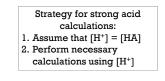
K_a of HNO₃ is so much larger

∴ HNO₃ is a much stronger acid; contribution of H₂O is negligible

H⁺

(2) autoionization of water: H,O → H+ + OH

(1) ionization of HNO₃


There are actually TWO processes that can contribute to [H⁺] :

Example 1. Find the [H⁺], [OH⁻], pH and pOH of a 0.042 mol/L HNO_{3 (aq)} solution.

This reaction proceeds according to the equation:

$$HNO_{3 (aq)} \rightarrow H^{+}_{(aq)} + NO_{3}^{-}_{(aq)}$$

Example 1. Find the [H⁺], [OH⁻], pH and pOH of a 0.042 mol/L $HNO_{3 (aq)}$ solution.

Example 1. Find the [H⁺], [OH⁻], pH and pOH of a 0.042 mol/L HNO_{3 (ag)} solution.

1 Find [H⁺] Since HNO₃ is a strong acid, $[H^+] = [HNO_3] = 0.042 \text{ M}$

🔁 <u>Find pH</u> $\overline{pH} = -\log[H^+] = -\log(0.042)$ pH = 1.38

Strategy for strong acid calculations: 1. Assume that $[H^+] = [HA]$ 2. Perform necessary calculations using [H⁺] Find pOH pH + pOH = 14.00

pOH = 12.62 4 Find IOH-1 [OH-] = 10-pOH = 10^{-12.62} [OH-] = 2.4 × 10⁻¹³ mol/L

pOH = 14.00 - pH

pOH = 14.00 - 1.38

Practice.

Pg. 513 #1, 2

- 1. Find [OH-] of a 0.0700 mol/L HCl solution. Ans: 1.43 x 10-13 M
- 2. A 2.00-L HBr solution contains 0.070 mol of acid. Find pH and pOH. Ans: pH = 1.46, pOH = 12.54

Solutions of Weak Acids

Weak acids only partially ionize in water.

· Percent ionization describes how much of the original acid ionizes to produce H⁺.

For the general weak acid ionization reaction

 $HA \rightleftharpoons H^+ + A$

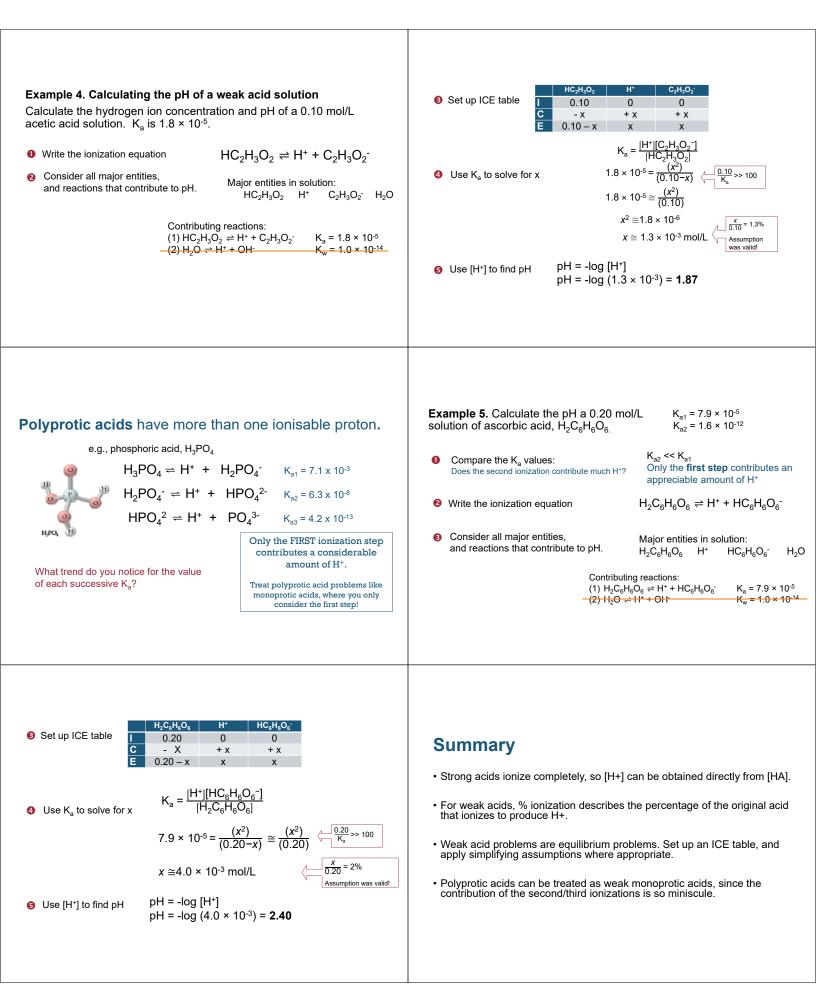
% ionization = $\frac{[H^+]}{[HA]_0} \times 100\%$

where $[H^*]$ is the concentration of ionized acid, and $[HA]_0$ is the **initial** acid concentration.

Example 2. Finding % Ionization Using pH

Calculate the percent ionization of propanoic acid, $HC_3H_5O_2$, if a 0.050 mol/L solution has a pH of 2.78.

- $HC_3H_5O_2 \rightleftharpoons H^+ + C_3H_5O_2^-$ Write the ionization equation Use pH to find [H⁺] [H⁺] = 10^{-2.78} $[H^+] = 1.7 \times 10^{-3} \text{ mol/L} \leftarrow \text{from the ionization}$
- 6 Calculate % ionization


```
% ionization = \frac{[H^+]}{[HC_3H_5O_2]_0} \times 100\%
            =\frac{1.7\times10^{-3}}{0.050}\times100\%
```

the quantity of H⁺

of HC₃H₅O₂

% ionization = 3.3%

Example 3. Finding K_a using % Ionization Given: % ionization = 7.8% HF 0.100 0 Calculate the K_a of hydrofluoric acid, HF, if a 0.100 mol/L solution 0 RTE: Ka at equilibrium has a percent ionization of 7.8%. 0.100 – x Х х 0.0922 mol/L 0.0078 mol/L 0.0078 mol/L $HE \stackrel{7.8\%}{\longleftrightarrow} H^+ + E^-$ **0** Write the ionization equation $x = 0.078 \times 0.100 \text{ mol/L}$ 4 Use % ionization to find [H⁺] and [F⁻] $x = 0.0078 \text{ mol/L} = [H^+] = [F^-]$ Write K_a expression $\mathsf{K}_{\mathsf{a}} = \frac{[\mathsf{H}^+][\mathsf{F}^-]}{[\mathsf{H}\mathsf{F}]}$ [HF] = 0.100 - x = 0.0922 mol/LUse x to find [HF] Requires all concentrations at equilibrium $\mathsf{K}_{\mathsf{a}} = \frac{[\mathsf{H}^+][\mathsf{F}^-]}{[\mathsf{H}\mathsf{F}]} = \frac{(0.0078)(0.0078)}{(0.0922)}$ H* HE F Set up ICE table 0.100 0 0 O Plug values into K_a $K_a = 6.6 \times 10^{-4}$ С - X + x + x 0.100 – x х х

Homework

Pg. 516 #2 Pg. 520 #1, 2 Pg. 521 #1, 2 Pg. 524 #1, 2 Pg. 525 #1-10a