Calculations Involving Bases

Section 8.5

Approach bases the same way as acid problems...

(1) For a strong base (Arrhenius base):

```
BOH}->\mp@subsup{\textrm{B}}{}{+}+\mp@subsup{\textrm{OH}}{}{-}\quad(100%
```

Assume stoichiometric quantities for $[\mathrm{BOH}]$, [B^{+}], and $\left[\mathrm{OH}^{-}\right]$
(2) For a weak base (Bronsted-Lowry):

$$
\begin{aligned}
\mathrm{B}_{(\mathrm{aq})} & +\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \rightleftharpoons \mathrm{BH}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})} \\
\text { Use } \mathrm{K}_{\mathrm{b}} & =\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
\end{aligned}
$$

Find $\left[\mathrm{OH}^{-}\right]$

Example 1. Find the pH a $0.020 \mathrm{~mol} / \mathrm{L} \mathrm{Ca}(\mathrm{OH})_{2(a q)}$ solution

$$
\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})} \rightarrow \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{OH}^{-}{ }_{(\mathrm{aq})}
$$

Solution
(1) Find $\left[\mathrm{OH}^{-}\right]$

Use molar ratios
(2) Calculate $\left[\mathrm{H}^{+}\right]$
(3) Find pH

$$
\left[\mathrm{OH}^{-}\right]=2\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=2(0.020)=0.040 \mathrm{~mol} / \mathrm{L}
$$

Since the $K_{b} \gg K_{w}$, assume the contribution of $\left[\mathrm{OH}^{-}\right]$from autoionization is negligible.
$\therefore\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.0 \times 10^{-14}}{0.040}=2.5 \times 10^{-13} \mathrm{~mol} / \mathrm{L}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(2.5 \times 10^{-13}\right)=12.60$

Example 2. Calculate the pH of a $0.100 \mathrm{~mol} / \mathrm{L}$ solution of hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{aq})$, a weak base. The K_{b} for hydrazine is 1.7×10^{-6}.
(1) Write the ionization equation
(2) Determine which reaction dominates.
(3) Set up ICE table
$\mathrm{N}_{2} \mathrm{H}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \rightleftharpoons \mathrm{N}_{2} \mathrm{H}_{5}{ }^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
Since the $\mathrm{K}_{\mathrm{b}} \gg \mathrm{K}_{\mathrm{w}}$, assume the contribution of [OH^{-}] from autoionization is negligible. Ionization of $\mathrm{N}_{2} \mathrm{H}_{4}$ dominates.

	$\mathrm{N}_{2} \mathrm{H}_{4}$	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{N}_{2} \mathrm{H}_{5}{ }^{+}$	OH^{-}
I	0.100	-	0	0
C	-x	-	$+x$	$+x$
E	$0.100-\mathrm{x}$	-	x	x

