
Calculations Involving Bases

Section 8.5

Example 1. Find the pH a 0.020 mol/L Ca(OH)_{2 (aq)} solution

 $Ca(OH)_{2 (aq)} \rightarrow Ca^{2+}_{(aq)} + 2 OH^{-}_{(aq)}$

<u>Solution</u>

Find [OH⁻] Use molar ratios $[OH^{-}] = 2 [Ca(OH)_{2}] = 2(0.020) = 0.040 \text{ mol/L}$

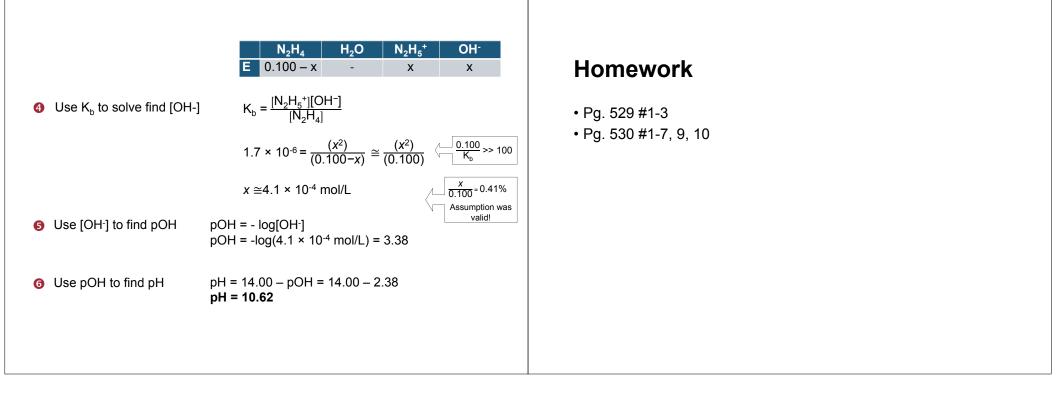
2 Calculate [H⁺]

Since the $K_b >> K_w$, assume the contribution of [OH⁻] from autoionization is negligible.

$$\therefore [H^+] = \frac{K_{W}}{[OH^-]} = \frac{1.0 \times 10^{-13}}{0.040} = 2.5 \times 10^{-13} \text{ mol/L}$$

6 Find pH

 $pH = -log [H^+] = -log (2.5 \times 10^{-13}) = 12.60$


Example 2. Calculate the pH of a 0.100 mol/L solution of hydrazine, N_2H_4 (aq), a weak base. The K_b for hydrazine is 1.7×10^{-6} .

- Write the ionization equation
- Determine which reaction dominates.
- Set up ICE table

 $N_2H_4 (aq) + H_2O_{(I)} \rightleftharpoons N_2H_5^+ (aq) + OH^- (aq)$

Since the $K_b >> K_w$, assume the contribution of [OH-] from autoionization is negligible. Ionization of N_2H_4 dominates.

	N_2H_4	H₂O	$N_{2}H_{5}^{+}$	OH [.]
l	0.100	-	0	0
С	- X	-	+ x	+ x
Е	0.100 – x	-	х	х

