Acid-Base Properties of Salts

Section 8.6

Not all salt solutions are neutral!!

Some salts have weak acidic or weak basic properties. Alter the pH of their aqueous solutions.

In general, A solution is neutral if it contains:	
anion of a strong acid	Cl⁻, NO₃⁻, etc.

the

the

Scenario 2: $\begin{array}{c} HC_{2}H_{3}O_{2}(aq) \\ weak \\ acid \end{array} + \begin{array}{c} NaOH_{(aq)} \rightarrow \\ strong \\ base \end{array} + \begin{array}{c} H_{2}O_{(l)} + \\ Na^{+}_{(aq)} \end{array} + \begin{array}{c} C_{2}H_{3}O_{2}(aq) \\ C_{2}H_{3}O_{2}^{-}_{(aq)} \end{array}$ The acetate ion is a weak base. It reacts with water to produce OH: $\begin{array}{c} c_{2}H_{3}O_{2}^{-}_{(aq)} + H_{2}O_{(l)} = HC_{2}H_{3}O_{2}(aq) + OH^{-}_{(aq)} \end{array}$ Therefore, the aqueous solution of NaC₂H₃O₂ is slightly basic (pH > 7). \end{array}

 \bullet Salts containing highly-charged metal ions \rightarrow Acidic solutions

- Water molecules form a "shell" of hydration around cation
- If cation has a large + charge, it can weaken the OH bond in surrounding H₂O → H₂O more readily gives up protons to solution
- Examples: Al³⁺ and Fe²⁺

- Metallic oxides React with water → Basic solutions • CaO $_{(s)}$ + H₂O $_{(l)}$ = Ca(OH)_{2 (aq)}
- Non-metallic oxides React with water \rightarrow Acidic solutions • CO_{2 (g)} + H₂O (I) = H₂CO_{3 (aq)}

Summary

- In aqueous solution, some salts dissolve to produce weakly acidic or basic solutions.
- ${\rm K}_{\rm a}$ and/or ${\rm K}_{\rm b}$ values can be used to predict the pH of such solutions.

Homework

Pg. 534 #1, 2 Pg. 536 #1, 2 Pg. 538 #1, 2 Pg. 539 #1-5