Acid-Base Properties of Salts

Not all salt solutions are neutral!!

Some salts have weak acidic or weak basic properties. Alter the pH of their aqueous solutions.

The element of CONFUSION

Scenario 1:

Therefore, the aqueous solution of NaCl IS neutral. $(\mathrm{pH}=7)$

Scenario 2:

In general,

A solution is slightly basic if it contains:
the cation of a strong base
the anion of a weak acid

Scenario 3:

A solution is slightly acidic if it contains:

the cation of a weak base
the anion of a strong acid
$\mathrm{Cl}, \mathrm{NO}_{3}{ }^{-}$, etc.

Example 1a. Predict whether a $0.10 \mathrm{~mol} / \mathrm{L}$ solution of $\mathrm{NaNO}_{2}(\mathrm{aq})$ will be acidic, basic, or neutral.
(1) Write the dissociation equation for the salt.
(2) Examine the cation and anion - are either of them weak acids or bases?
$\mathrm{NaNO}_{2(\mathrm{aq})} \rightarrow \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{NO}_{2}^{-}{ }_{(\mathrm{aq})}$

- Na^{+}- CA of $\mathrm{NaOH} . \therefore$ No effect on pH
- $\mathrm{NO}_{2}{ }^{-}-\mathrm{CB}$ of HNO_{2} (aq). Since HNO_{2} (aq) is only a weak acid, NO_{2}^{-}will act as a weak base.

Therefore, the solution of NaNO_{2} will be basic.

Example 1b. Find the pH of a $0.10 \mathrm{~mol} / \mathrm{L}$ solution of NaNO_{2} (aq).
(1) Write the equation for the reaction between the weak base, and water
$\mathrm{NO}_{2}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \rightleftharpoons \mathrm{HNO}_{2(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
(2) Set up an ICE table and K_{b} expression.
$\left[\mathrm{NO}_{2}-\right]_{0}=\left[\mathrm{NaNO}_{2}\right]$ because

	$\mathrm{NO}_{2}{ }^{-}$	$\mathrm{H}_{2} \mathrm{O}$	HNO_{2}	OH^{-}
I	0.10	-	0	0
C	-x	-	+x	+x
E	$0.10-\mathrm{x}$	-	x	x

ALL SALTS are highly soluble

(3) Use K_{a} of conjugate acid to find K_{b}.
K_{a} of $\mathrm{HNO}_{2}=4.6 \times 10^{-4}$

Sub in values and solve for $\left[\mathrm{OH}^{-}\right]$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{a}} \mathrm{~K}_{\mathrm{b}} & =\mathrm{K}_{\mathrm{w}} \\
\mathrm{~K}_{\mathrm{b}} & =\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}}}=\frac{1.0 \times 10^{-14}}{4.6 \times 10^{-4}} \\
\mathrm{~K}_{\mathrm{b}} & =2.2 \times 10^{-11}
\end{aligned}
$$

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{HNO}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NO}_{2}^{-}\right]}
$$

$$
2.2 \times 10^{-11}=\frac{\left(x^{2}\right)}{(0.10-x)} \cong \frac{\left(x^{2}\right)}{(0.10)} \quad \frac{0.10}{K_{b}} \gg 100
$$

$$
x \cong 1.5 \times 10^{-6} \mathrm{~mol} / \mathrm{L}
$$

Other salts that affect pH

- Salts containing highly-charged metal ions \rightarrow Acidic solutions
- Water molecules form a "shell" of hydration around cation
- If cation has a large + charge, it can weaken the OH bond in surrounding $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}$ more readily gives up protons to solution
- Examples: Al^{3+} and Fe^{2+}

- Metallic oxides - React with water \rightarrow Basic solutions - $\mathrm{CaO}{ }_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})}$
- Non-metallic oxides - React with water \rightarrow Acidic solutions - $\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}$

Summary

- In aqueous solution, some salts dissolve to produce weakly acidic or basic solutions.
- K_{a} and/or K_{b} values can be used to predict the pH of such solutions.

Homework

Pg. 534 \#1, 2
Pg. 536 \#1, 2
Pg. 538 \#1, 2
Pg. 539 \#1-5

