

The equivalence point is determined using stoichiometry (molar ratios).

HCl $_{(aq)}$ + NaOH $_{(aq)}$ \rightarrow H₂O $_{(l)}$ + NaCl $_{(aq)}$ n = 0.150 mol n = 0.150 mol

 $2 \text{ HCl}_{(aq)} + \text{Ca(OH)}_{2 (aq)} \rightarrow 2 \text{ H}_2\text{O}_{(I)} + \text{CaCl}_{2 (aq)}$ n = 0.150 mol n = 0.0750 mol

The most common type of titration is an acid-base titration.

- acid and base react in a neutralization reaction
- progress of reaction is monitored using a pH indicator
 - ENDPOINT The point of the reaction when the indicator changes colour

For maximum experimental accuracy,

ENDPOINT = EQUIVALENCE POINT

Experimental The visual point when the indicator changes colour $\frac{\text{Theoretical}}{\text{The stoichiometric point}}$ when $n_{acid} = n_{base}$

These are NOT inherently the same thing! You need to be careful about picking an indicator that changes colour at the equivalence point.

Before a titration is performed, the titrant must be **standardized**.

- Standardization involves accurately determining the concentration of the titrant.
- It is accomplished by titrating the titrant with a stable, non-volatile acid or base, of whose concentration we can be certain.

- sample of unknown concentration.
 Use stoichiometry to find the unknown concentration.
- The endpoint of the reaction is a visual indicator that the reaction has reached its equivalence point.
 They are not the same thing, though a properly selected pH indicator

can ensure that the endpoint is achieved at the equivalence point.

Strong Acid-Strong Base

Qualitative Analysis

strong	acid + strong bas	se → salt + w	ater
$\text{HNO}_{3(\text{aq})}$ + $\text{NaOH}_{(\text{aq})}$ \rightarrow $\text{NaNO}_{3(\text{aq})}$ + $\text{H}_{2}\text{O}_{(\text{I})}$			
HNO _{3 (aq)}	+ NaOH _(aq) →	Na+ _(aq) + NO ₃ - _{(aq}) + H ₂ O (I)
	Net and NO	- de met heure esidie/hee	

Na⁺ and NO₃⁻ do not have acidic/basic properties \therefore solution is neutral at the equivalence point.

Quantitative Analysis

All titrations need to be analyzed in two steps:

1. As stoichiometry problems:

- How many MOLES of acid/base are in the solution?
- Which one is in excess, and how will that affect pH?

2. As equilibrium problems

• In the case of **weak** acids or bases, what **CONCENTRATION** of acid/base will dissociate? This determines pH.

Since strong acids and bases completely dissociate, you don't really have to consider <u>these</u> systems as equilibrium problems. You will see the equilibrium component when we do weak acid or weak base problems.

You will use mainly stoichiometry to analyze strong acid-strong base systems.

d) <u>At the equivalence point</u> : After 100.0mL of titrant is added the sample, what is the pH? I Stoichiometry: How many moles of base are present? I Stoichiometry: How many moles of base are present? I Moles before 50.0 mL x 0.200 mol/L 100.0 mL x 0.100 mol/L H + and C reaction = 10.0 mmol = 10.0 mmol = 10.0 mmol stoichion amounts	$NO_{3^{-}(aq)}, Na^{+}_{(aq)}, H_{2}O_{(l)}$ $Na^{+} and NO_{3^{-}} don't affect pH.$ The only H ⁺ ions are those produced by autoionization of water. $etric$ What is the concentration of H ⁺ ? $[H^{+}] = 1.00 \times 10^{-7} \text{ mol/L} \text{ (from autoionization)}$		
A typical pH curve for a strong acid-strong base titration I_{a}^{f}	e) <u>Beyond the equivalence point</u> : After 150.0mL of titrant is added to the sample, what is the pH? • Stoichiometry: How many moles of base are present? • <u>H* OH: H2O</u> • <u>Moles before</u> 50.0 mL x 0.200 mol/L 150.0 mL x 0.100 mol/L reaction = 10.0 mmol = 15.0 mmol Now H* is limiting and OH* is excess • <u>Moles after</u> 10.0 mmol - 10.0 mmol = 5.0 mmol = 5.0 mmol		
• Consider all species in the solution. Which one controls the pH? Past the equivalence point, there is left to react with the additional OH- Therefore, the major entities in solu are: OH- (aq), Na ⁺ (aq), NO ₃ ⁻ (aq), and H ₂ O Since OH is a much stronger back H ₂ O, it will control pH. • Equilibrium: What is the concentration of OH-? What is the concentration of OH-? There is 5.0 mmol of OH- remaining. Total volume of solution is 50.0 mL (acid) + 150.0 mL (base) = 200 Therefore, [OH] = $\frac{5.0 \text{ mmol}}{200.0 \text{ mL}} = 0.02 $	tion () Calculate pOH and then pH () $pOH = -log [OH^-]$ = -log (0.025) pOH = 1.60 () $pH = 14.00 - 1.60 = 12.40$ () When 150.0 mL of the titrant has been added the pH rises to 12.40		

Practice.

In a titration, a 25.00 mL sample of 0.350 mol/L hydrochloric acid is titrated with 0.500 mol/L sodium hydroxide.

- a) What is the pH of the HCl solution BEFORE any titrant is added? [0.456]
- b) Determine the amount of unreacted hydrogen ions after 10.00 mL of base has been added. [3.75 mmol]
- c) Determine the pH after 10.00 mL of base has been added. [0.971]
- d) What volume of base must be added to reach the equivalence point?

[17.5 mL]

If you finish... work on Pg. 547 Practice #1, 2

Summary

- Titrations involving strong acids and strong bases involve mainly stoichiometric calculations.
- The equivalence point of a titration occurs when stoichiometric amounts of both reactants have been mixed.
 - ie, when molar ratios are present, and all reactant molecules from both solutions have been completely consumed
- At the equivalence point of a strong acid-strong base titration, the pH of the solution is exactly 7.00 (neutral).

Homework

- Pg. 547 #1, 2
- Pg. 557 #1, 2
- Worksheet