Acid-Base Titrations

Section 8.7
Homework
(Strong Acid-Strong Base)
Pg. 547 \#1, 2
Pg. 557 \#1, 2
Worksheet

Titration is a quantitative technique used to find the concentration of a solution.

- involves the progressive addition of precise volumes of the titrant to the sample

The titrant is the solution in the burette; it has a KNOWN concentration.

The sample is the solution held in the flask; it has an UNKNOWN concentration.

The titrant is added to the sample until the point when all reactant in the sample is consumed. This is the EQUIVALENCE POINT.

The equivalence point is determined using stoichiometry (molar ratios).

$$
\begin{aligned}
& \mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{NaCl}_{(\mathrm{aq})} \\
& \mathrm{n}=0.150 \mathrm{~mol} \mathrm{n}=0.150 \mathrm{~mol} \\
& 2 \mathrm{HCl} \\
& { }_{(\mathrm{aq})}+\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})} \rightarrow \\
& 2 \mathrm{H} \\
& \mathrm{H}_{2} \mathrm{O} \\
& \text { (I) }^{+} \\
& \mathrm{CaCl}_{2} \\
& \mathrm{n}=0.150 \mathrm{~mol} \quad \mathrm{n}=0.0750 \mathrm{~mol}
\end{aligned}
$$

For maximum experimental accuracy,

ENDPOINT = EQUIVALENCE POINT

Before a titration is performed, the titrant must be standardized.

- Standardization involves accurately determining the concentration of the titrant.

Experimental
The visual point when the indicator changes colour

Theoretical
The stoichiometric point
when $n_{\text {acid }}=n_{\text {base }}$

The most common type of titration is an acid-base titration.

- acid and base react in a neutralization reaction
- progress of reaction is monitored using a pH indicator
- ENDPOINT - The point of the reaction when the indicator changes colour

- It is accomplished by titrating the titrant with a stable, nonvolatile acid or base, of whose concentration we can be certain.

These are NOT inherently the same thing!
You need to be careful about picking an indicator that changes colour at the equivalence point.

Δ Learning Checkpoint

- Titration involves reacting a precise volume of titrant with a sample of unknown concentration.
- Use stoichiometry to find the unknown concentration.
- The endpoint of the reaction is a visual indicator that the reaction has reached its equivalence point.
- They are not the same thing, though a properly selected pH indicator can ensure that the endpoint is achieved at the equivalence point.

Strong Acid-Strong Base Titrations

Qualitative Analysis

$$
\begin{gathered}
\text { strong acid }+ \text { strong base } \rightarrow \text { salt }+ \text { water } \\
\mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq)}} \rightarrow \mathrm{NaNO}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
\mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{Na}_{(\mathrm{aq})}^{+}+\mathrm{NO}_{3_{(a q)}^{-}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
\end{gathered}
$$

Na^{+}and $\mathrm{NO}_{3}{ }^{-}$do not have acidic/basic properties \therefore solution is neutral at the equivalence point.

Quantitative Analysis

All titrations need to be analyzed in two steps:

1. As stoichiometry problems:

- How many MOLES of acid/base are in the solution?
- Which one is in excess, and how will that affect pH ?

2. As equilibrium problems

- In the case of weak acids or bases, what CONCENTRATION of acid/base will dissociate? This determines pH .

Since strong acids and bases completely dissociate, you don't really have to consider these systems as equilibrium problems. You will see the equilibrium component when we do weak acid or weak base problems.

You will use mainly stoichiometry to analyze strong acid-strong base systems.

All titrations can be analyzed at multiple points:

Example 1.

$$
\mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{NaNO}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}
$$

a) Use stoichiometry to calculate the volume of NaOH that will be required to react completely with the sample of HNO_{3}.

b) Before the titrant is added, what is the pH of the solution?

(1) Stoichiometry: How many moles of acid are present?

(2) Consider all species in the solution. Which one controls the pH ?

No base has been added, therefore no acid has reacted yet. The solution contains the original amount of HNO_{3}.
$\mathrm{H}^{+}{ }_{(\mathrm{aq})}, \mathrm{NO}_{3}{ }^{-}{ }_{(\text {(aq) }}, \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
HNO_{3} is a strong acid.$:$ it controls the pH
(3) Equilibrium:

What is the concentration of H^{+}?
HNO_{3} is a strong acid. Therefore, $0.200 \mathrm{~mol} / \mathrm{L} \mathrm{HNO}_{3}$ contains hydrogen ions at a concentration of $\mathbf{0 . 2 0 0} \mathrm{mol} / \mathrm{L}$.
(4) Calculate pH
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$=-\log (0.200)$
$\mathrm{pH}=0.699$

Before any base is added, the HNO_{3} solution has a pH of $\mathbf{0 . 6 9 9}$.
c) Before the equivalence point: after 10.0 mL of the titrant is added, what is the pH of the solution?
(1) Stoichiometry: How many moles of acid are present?

Soon after the base is added to the sample, the OH^{-}will react with the H^{+}:

	H^{+}	OH-	$\mathrm{H}_{2} \mathrm{O}$
Moles before reaction	$\begin{aligned} & 50.0 \mathrm{~mL} \times 0.200 \mathrm{~mol} / \mathrm{L} \\ & =10.0 \mathrm{mmol} \end{aligned}$	$\begin{aligned} & 10.0 \mathrm{~mL} \times 0.100 \mathrm{~mol} / \mathrm{L} \\ & =1.00 \mathrm{mmol} \end{aligned}$	There is more H^{+}
Moles after reaction	$\begin{aligned} & 10.0 \mathrm{mmol}-1.00 \mathrm{mmol} \\ & =9.0 \mathrm{mmol} \end{aligned}$	$\begin{aligned} & 1.00 \mathrm{mmol}-1.00 \mathrm{mmol} \\ & =0 \mathrm{mmol} \end{aligned}$	will get used up, leaving excess H^{+}.

(2) Consider all species in the solution Which one controls the pH ?

(3) Equilibrium:
 What is the concentration of H^{+}?

$\mathrm{H}^{+}{ }_{(\mathrm{aq})}, \mathrm{NO}_{3}{ }^{-}{ }_{(\mathrm{aq})}, \mathrm{Na}^{+}{ }_{(\text {aq) }}, \mathrm{OH}^{-}{ }_{(\text {(aq) })}, \mathrm{H}_{2} \mathrm{O}_{(1)}$
The excess leftover ion $\left(\mathrm{H}^{+}\right)$will control the pH .

There is $9.0 \mathbf{~ m m o l}$ of H^{+}remaining. Total volume of solution is 50.0 mL (acid) +10.0 mL (base) $=\mathbf{6 0 . 0} \mathbf{~ m L}$

Therefore, $\left[\mathrm{H}^{+}\right]=\frac{9.0 \mathrm{mmol}}{60.0 \mathrm{~mL}}=\mathbf{0 . 1 5 ~ \mathrm { mol } / \mathrm { L }}$
(4) Calculate pH

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
= & -\log (0.15)
\end{aligned}
$$

$$
\mathrm{pH}=0.82
$$

After 10.0 mL of titrant has been added, the pH of the solution rises to 0.82
d) At the equivalence point: After 100.0 mL of titrant is added to the sample, what is the pH ?
© Stoichiometry: How many moles of base are present?

	H^{+}	OH-	$\mathrm{H}_{2} \mathrm{O}$
Moles before reaction	$\begin{aligned} & 50.0 \mathrm{~mL} \times 0.200 \mathrm{~mol} / \mathrm{L} \\ & =10.0 \mathrm{mmol} \end{aligned}$	$\begin{aligned} & 100.0 \mathrm{~mL} \times 0.100 \mathrm{~mol} / \mathrm{L} \\ & =10.0 \mathrm{mmol} \end{aligned}$	$\mathrm{H}+$ and $\mathrm{OH}-$ are
Moles after reaction	$\begin{aligned} & 10.0 \mathrm{mmol}-10.0 \mathrm{mmol} \\ & =0 \mathrm{mmol} \end{aligned}$	$\begin{aligned} & 10.0 \mathrm{mmol}-10.0 \mathrm{mmol} \\ & =0 \mathrm{mmol} \end{aligned}$	stoichiometric amounts.

(2) Consider all species in the solution. All the H^{+}and OH^{-}have been consumed. Which one controls the pH ?
$\mathrm{NO}_{3}{ }^{-}{ }_{(\text {aq })}, \mathrm{Na}^{+}{ }_{(\text {aq })}, \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
Na^{+}and $\mathrm{NO}_{3}{ }^{-}$don't affect pH .
The only H^{+}ions are those produced
by autoionization of water.
(3) Equilibrium:

What is the concentration of H^{+}?
$\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$ (from autoionization)
(4) Calculate pH

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left(1.00 \times 10^{-7}\right) \\
\mathrm{pH} & =7.00
\end{aligned}
$$

At the equivalence point of a strong acidstrong base titration, the pH is exactly 7.00

A typical pH curve for a strong acid-strong base titration

e) Beyond the equivalence point: After 150.0 mL of titrant is added to the sample, what is the pH ?
© Stoichiometry: How many moles of base are present?

	H^{+}	OH-	$\mathrm{H}_{2} \mathrm{O}$
Moles before reaction	$\begin{aligned} & 50.0 \mathrm{~mL} \times 0.200 \mathrm{~mol} / \mathrm{L} \\ & =10.0 \mathrm{mmol} \end{aligned}$	$\begin{aligned} & 150.0 \mathrm{~mL} \times 0.100 \mathrm{~mol} / \mathrm{L} \\ & =15.0 \mathrm{mmol} \end{aligned}$	Now H^{+}is limiting and OH^{-}is excess
Moles after reaction	$\begin{aligned} & 10.0 \mathrm{mmol}-10.0 \mathrm{mmol} \\ & =0 \mathrm{mmol} \end{aligned}$	$\begin{aligned} & 15.0 \mathrm{mmol}-10.0 \mathrm{mmol} \\ & =5.0 \mathrm{mmol} \end{aligned}$	

(2) Consider all species in the solution. Which one controls the pH ?
(3) Equilibrium:

What is the concentration of OH^{-}?

Past the equivalence point, there is $n o \mathrm{H}^{+}$ left to react with the additional OH -
Therefore, the major entities in solution are:
$\mathrm{OH}^{-}{ }_{(\mathrm{aq})}, \mathrm{Na}^{+}{ }_{(\mathrm{aq})}, \mathrm{NO}_{3}{ }^{-}{ }_{(\mathrm{aq})}$, and $\mathrm{H}_{2} \mathrm{O}_{\text {(1) }}$
Since OH^{-}is a much stronger base than $\mathrm{H}_{2} \mathrm{O}$, it will control pH .

There is 5.0 mmol of OH^{-}remaining
Total volume of solution is 50.0 mL (acid) +150.0 mL (base) $=\mathbf{2 0 0 . 0} \mathbf{~ m L}$

Therefore, $\left[\mathrm{OH}^{-}\right]=\frac{5.0 \mathrm{mmol}}{200.0 \mathrm{~mL}}=\mathbf{0 . 0 2 5} \mathrm{mol} / \mathrm{L}$
(4) Calculate pOH and then pH

$$
\begin{aligned}
\mathrm{pOH} & =-\log \left[\mathrm{OH}^{-}\right] \\
& =-\log (0.025) \\
\mathrm{pOH} & =1.60
\end{aligned}
$$

$$
\mathrm{pH}=14.00-1.60=12.40
$$

When 150.0 mL of the titrant has been added, the pH rises to $\mathbf{1 2 . 4 0}$.

Practice.

In a titration, a 25.00 mL sample of $0.350 \mathrm{~mol} / \mathrm{L}$ hydrochloric acid is titrated with $0.500 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide.
a) What is the pH of the HCl solution BEFORE any titrant is added? [0.456]
b) Determine the amount of unreacted hydrogen ions after 10.00 mL of base has been added. [3.75 mmol]
c) Determine the pH after 10.00 mL of base has been added. [0.971]
d) What volume of base must be added to reach the equivalence point?

If you finish... work on Pg. 547 Practice \#1, 2

Summary

- Titrations involving strong acids and strong bases involve mainly stoichiometric calculations.
- The equivalence point of a titration occurs when stoichiometric amounts of both reactants have been mixed.
- ie, when molar ratios are present, and all reactant molecules from both solutions have been completely consumed
- At the equivalence point of a strong acid-strong base titration, the pH of the solution is exactly 7.00 (neutral).

