Weak Acid-Strong Base Titrations

Qualitative Analysis

weak acid + strong base \rightarrow basic salt + water $HC_2H_3O_2{}_{(aq)}$ + NaOH ${}_{(aq)}$ \rightarrow NaC₂H₃O₂ ${}_{(aq)}$ + H₂O ${}_{(l)}$ $HC_2H_3O_2{}_{(aq)}$ + NaOH ${}_{(aq)}$ \rightarrow Na⁺ ${}_{(aq)}$ + C₂H₃O₂⁻ ${}_{(aq)}$ + H₂O ${}_{(l)}$

> Na⁺ does not have acidic properties But $C_2H_3O_2$ is a **weak base** ∴ solution will be slightly basic at the equivalence point.

Quantitative Analysis

Remember, all titrations need to be analyzed in two steps:

As stoichiometry problems:
How many MOLES of acid/base are in the solution? Which one is in excess, and how will that affect pH?

As equilibrium problems In the case of weak acids or bases, what CONCENTRATION of acid/base will dissociate? This determines pH.

Example 2. $HC_2H_3O_{2 (aq)} + NaOH_{(aq)} \rightarrow NaC_2H_3O_{2 (aq)} + H_2O_{(l)}$

a) Use stoichiometry to calculate the volume of NaOH that will be required to react completely with the sample of $HC_2H_3O_2$.

