Strong Acid-Weak Base Titrations

Qualitative Analysis

$$
\begin{aligned}
& \text { strong acid }+ \text { weak base } \rightarrow \text { acidic salt }+ \text { water } \\
& \mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NH}_{3(\mathrm{aq})} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \\
& \mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NH}_{3(\mathrm{aq})} \rightarrow \mathrm{NH}_{4}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \\
& \mathrm{Cl} \text { - does not have basic properties, } \\
& \text { but } \mathrm{NH}_{4}{ }^{+} \text {is a weak acid } \\
& \therefore \text { solution will be slightly acidic } \\
& \text { at the equivalence point. }
\end{aligned}
$$

Quantitative Analysis

Remember, all titrations need to be analyzed in two steps:

1. As stoichiometry problems:

- How many MOLES of acid/base are in the solution? Which one is in excess, and how will that affect pH ?

2. As equilibrium problems

- In the case of weak acids or bases, what CONCENTRATION of acid/base will dissociate? This determines pH .

Example 3. $\quad \mathrm{HCl}_{(\mathrm{aq)}}+\mathrm{NH}_{3(\mathrm{aq)}} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(1)}$
a) Use stoichiometry to calculate the volume of HCl that will be required to react completely with the sample of NH_{3}.

(3) Equilibrium: What is the concentration of OH^{-}?
NH_{3} is a weak base \therefore it only partially ionizes. Use the K_{b} to find the concentration of OH^{-}at equilibrium.
No acid has been added, therefore no base has reacted yet. The solution contains the original amount of NH_{3}.
$\mathrm{NH}_{3(\mathrm{aq})}, \mathrm{NH}_{4}^{+}(\mathrm{aq}), \mathrm{OH}^{-}(\mathrm{aq}), \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
Even though NH_{3} is a weak base, its K_{b} is much greater than the K_{w} of water \therefore it controls the pH :

$$
\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

	NH_{3}	$\mathrm{H}_{2} \mathrm{O}$	NH_{4}^{+}	OH^{-}
I	0.100	-	0	0
C	-x	-	+x	+x
E	$0.100-\mathrm{x}$	-	x	x

$$
\begin{aligned}
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]} \xrightarrow{\text { sub in }} 1.8 \times 10^{-5}=\frac{\left(x^{2}\right)}{(0.100-\boldsymbol{x})} \cong \frac{\left(x^{2}\right)}{(0.100)} \begin{array}{l}
\text { 0.100/K } K_{b}>100 \\
\text { ase implifying } \\
\text { assumption }
\end{array} \\
\boldsymbol{x} \cong 1.3 \times \mathbf{1 0}^{-\mathbf{3} \mathbf{~ m o l} / \mathrm{L}=\left[\mathrm{OH}^{-}\right]}
\end{aligned}
$$

(4) Calculate pOH and $\mathrm{pH} \quad \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$

$$
\begin{aligned}
& =-\log \left(1.3 \times 10^{-3}\right) \\
\mathrm{pOH} & =2.88
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{pH} & =14.00-\mathrm{pOH} \\
& =14.00-2.88 \\
\mathrm{pH} & =11.11
\end{aligned}
$$

Before any acid is added, the NH_{3} solution has a pH of 11.11.
c) At the equivalence point: After 20.0 mL of titrant is added to the sample, what is the pH ?
(1) Stoichiometry: How many moles of acid/base are present?

At the equivalence point, exactly 3.00 mmol of HCl has been added, which reacts with the 3.00 mmol of base initially present.
(2) Consider all species in the solution. Which one controls the pH ?

All the H^{+}and OH^{-}have been consumed.
Entities in solution: $\mathrm{NH}_{4}{ }^{+}{ }_{(\mathrm{aq})}, \quad \mathrm{Cl}^{-}{ }_{(\text {aq })}$, and $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
$\mathrm{NH}_{4}{ }^{+}$is a weak acid and CAN affect pH . It dissociates: $\quad \mathrm{Cl}$ does not affect pH

$$
\mathrm{NH}_{4}^{+} \rightleftharpoons \mathrm{H}^{+}+\mathrm{NH}_{3}
$$

To find the K_{a} of this weak conjugate base,
use the K_{b} of its acid:
$\mathrm{K}_{\mathrm{w}}=\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}$
Even though the K_{a} for $\mathrm{NH}_{4}{ }^{+}$is small, it is still $\mathrm{K}_{\mathrm{a}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}}}=\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}$ much larger than the K_{w} for water.
$K_{a}=5.6 \times 10^{-10}$
Therefore, the $\mathrm{NH}_{4}{ }^{+}$will control the pH .

(3) Equilibrium:

What is the concentration of H^{+}?

$\left[\mathrm{NH}_{4}{ }^{+}\right]=\frac{3.00 \mathrm{mmol}}{20.0 \mathrm{~mL}+20.0 \mathrm{~mL}}=0.0750 \mathrm{~mol} / \mathrm{L}$		NH_{4}^{+}	\mathbf{H}^{+}	NH_{3}
	C	0.0750	0	0
	E	$0.0750-\mathrm{x}$	+x	+x
			0.0750	X

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\left[\mathrm{NH}_{3}\right]\right.}{\left[\mathrm{NH}_{4}^{+}\right]} \\
& 5.6 \times 10^{-10}=\frac{\left(x^{2}\right)}{(0.0750-x)} \cong \frac{\left(x^{2}\right)}{(0.0750)} \quad \begin{array}{l}
\quad \therefore \text { use simplifyin } \\
\text { assumption }
\end{array} \\
& x \cong 6.5 \times 10^{-6} \mathrm{~mol} / \mathrm{L}=\left[\mathrm{H}^{+}\right] \\
& x / 0.0750=0.0087 \% \\
& \therefore \text { assumption was } \\
& \text { valid }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left(6.5 \times 10^{-6}\right)
\end{aligned}
$$

In general, at the equivalence point of a titration between a strong acid and a weak base, the pH will be slightly acidic.
$\mathrm{pH}=5.19$
(4) Calculate pH
pH 5.19

A typical pH curve for a strong acid-weak base titration

Learning Checkpoint

- In cases where either a weak acid or a weak base are involved in a titration, the pH will NOT be 7.00 at the equivalence point.

Acid-Base indicators are used to signal the endpoint of your titration reaction.

Ideally, you want your visual endpoint to match closely with the equivalence point of the reaction.

- Choose an indicator that changes its colour in the target pH range

Match the indicator with the type of titration it is best suited for:
A. Strong acid - Strong base
B. Weak acid - Strong base
C. Strong acid - Weak base

Homework

- Pg. 557 \#3, 7
- Worksheet: Weak Acids and Weak Bases

