Buffer Solutions

Section 8.8

A buffer solution is one that resists changes in pH when small quantities of acid or base are added to it.

- Can be acidic or basic
- Contains entities that can remove any $H^{\scriptscriptstyle +}$ or $OH^{\scriptscriptstyle -}$ that are added to it

Acidic buffers

• Made of a weak acid, and a salt of its conjugate base

Eg. $HC_2H_3O_2$ and $NaC_2H_3O_2$

Basic buffers

• Made of a weak base, and a salt of its conjugate acid

Eg. NH₃ and NH₄Cl

How does a buffer work?

Consider the acidic buffer of acetic acid/acetate ion.

The two entities exist in equilibrium:

$$\mathsf{HC}_2\mathsf{H}_3\mathsf{O}_2\ \rightleftharpoons\ \mathsf{H}^{\scriptscriptstyle +}+\mathsf{C}_2\mathsf{H}_3\mathsf{O}_2^{\scriptscriptstyle -}$$

- The buffer solution contains these entities:
 - Unionized acetic acid
 - Ethanoate ions
 - Protons
 Determines pH

Also present, but not important: • Na⁺

A buffer solution is one that maintains a fairly constant pH, even when extra acid or base is added to it.

- Made of a weak acid and its conjugate base (acidic buffer), or a weak base and its conjugate acid (basic buffer). The entities in solution are able to neutralize any added H⁺ or OH⁻.
- · The pH of a buffer solution is determined by two things:
 - The K_a of the acid (or K_b of the base)
 The RATIO of HA to A⁻ (or B or BH⁺, for a basic buffer)
- The buffering capacity of the solution will be determined by the absolute magnitudes of these concentrations (as opposed to the ratio).

pH Calculations for a Buffer System

- Buffer systems are equilibrium systems
 - Have K values
 - · Analyze using ICE table
 - However

Example 2. Calculate the pH of a buffer solution that contains 0.10 mol/L acetic acid, and 0.20 mol/L sodium acetate. The K_a for acetic acid is 1.74×10^{-5} .

Logic: This is an acidic buffer solution. The pH will be determined by the concentration of H^+ present.

• This concentration is, in turn, determined by how much $HC_2H_3O_2$ is "allowed" to ionize in the presence of the $C_2H_3O_2$ ion.

		H⁺	C ₂ H ₃ O ₂ -
I	0.10	0	0.20
С	- x	+ x	+ x
Ε	0.10 – x	х	0.20 + x

Calculations for basic buffer solutions are very similar.

Example 3. Find the pH of a buffer solution that has 0.10 mol/L of NH_3 and 0.050 mol/L $NH_4CI.$ The K_b of NH_3 is 1.8 x 10 $^5.$

Logic: This basic buffer solution has a pH that is controlled by the reaction of ammonia with water:

$NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$							
	NH ₃	H ₂ O	NH4 ⁺	OH-	Solve this one vourself!		
L	0.10	-	0.050	0			
С	- X	-	+ x	+ x			
Е	0.10 – x	-	0.050 + x	х			

Homework

• Pg. 567 #1-8 • Pg. 565 #1-3