Buffer Solutions

A buffer solution is one that resists changes in pH when small quantities of acid or base are added to it.

- Can be acidic or basic
- Contains entities that can remove any H^{+}or OH^{-}that are added to it

Acidic buffers

- Made of a weak acid, and a salt of its conjugate base

Eg. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

Basic buffers

- Made of a weak base, and a salt of its conjugate acid

Eg. NH_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$

How does a buffer work?

Consider the acidic buffer of acetic acid/acetate ion.

The two entities exist in equilibrium:

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}
$$

The buffer solution contains these entities:

- Unionized acetic acid
- Ethanoate ions
- Protons
 Determines pH

Also present, but not important:

- Na^{+}
- $\mathrm{H}_{2} \mathrm{O}$

Add a base

Add an acid
Acetate ion will react with the H^{+}
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}+\mathrm{H}^{+} \rightarrow \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}$

Buffer System:

$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$

Acetic acid will react
with the OH^{-}
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}$

...but why doesn't the pH change?

The pH of the solution is determined by the RATIO of acid to conjugate base.

$$
\begin{aligned}
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} & \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]} \\
& \text { Re-arrange for }\left[\mathrm{H}^{+}\right] \ldots
\end{aligned} \quad\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}} \times \frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]} .
$$

The concentrations of $[H A]$ and $[A-]$ change so minimally that the ratio of $[\mathrm{HA}] /[\mathrm{A}]$ remains fairly constant $\therefore \mathrm{pH}$ does not change

Example 1.

What ratio of $\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}-\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}$ would produce a buffer with a pH of 4.46 ?

- Find the $\left[\mathrm{H}^{+}\right]$of a solution with pH 4.46 .
$\left[\mathrm{H}^{+}\right]=10^{-4.46}$
$\left[\mathrm{H}^{+}\right]=3.5 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
(2) Sub known values into K_{a} expression. Solve for ratio.

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm { H } ^ { + } \left[\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]\right.\right.}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}=\left[\mathrm{H}^{+}\right]\left(\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-]}\right.}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}\right)
$$

$$
1.74 \times 10^{-5}=3.5 \times 10^{-5} \mathrm{~mol} / \mathrm{L}\left(\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}-\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}\right)
$$

$$
0.50=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}-\right]}{\left[\mathrm{HC} \mathrm{H}_{2} \mathrm{O}\right]}
$$

$0.50=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}$ (rounded to 2 sD)

The buffering capacity of a solution refers to HOW MUCH acid or base it can handle, without changing its pH .

- A solution with a large buffering capacity can handle a lot of added hydrogen or hydroxide ions.
- Buffering capacity is determined by the ABSOLUTE MAGNITUDES of $[\mathrm{HA}]$ and $[\mathrm{A}-]$.
- Larger concentrations of acid HA and A- are able to neutralize a larger amount of added base or acid.

Learning Checkpoint

- A buffer solution is one that maintains a fairly constant pH , even when extra acid or base is added to it.
- Made of a weak acid and its conjugate base (acidic buffer), or a weak base and its conjugate acid (basic buffer).
- The entities in solution are able to neutralize any added H^{+}or OH^{-}.
- The pH of a buffer solution is determined by two things:
- The K_{a} of the acid (or K_{b} of the base)
- The RATIO of HA to A^{-}(or B or BH^{+}, for a basic buffer)
- The buffering capacity of the solution will be determined by the absolute magnitudes of these concentrations (as opposed to the ratio).

pH Calculations for a Buffer System

- Buffer systems are equilibrium systems
- Have K values
- Analyze using ICE table
- However
H^{+}and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$are not equal in these cases

Example 2. Calculate the pH of a buffer solution that contains $0.10 \mathrm{~mol} / \mathrm{L}$ acetic acid, and $0.20 \mathrm{~mol} / \mathrm{L}$ sodium acetate.
The K_{a} for acetic acid is 1.74×10^{-5}.
Logic: This is an acidic buffer solution. The pH will be determined by the concentration of H^{+}present.

- This concentration is, in turn, determined by how much $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is "allowed" to ionize in the presence of the $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$ion.

	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	H^{+}	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$
I	0.10	0	0.20
C	-x	+x	+x
E	$0.10-\mathrm{x}$	x	$0.20+\mathrm{x}$

K_{a} for acetic acid is 1.74×10^{-5}

Simplifying assumption:
the amount of acid that ionizes, x, is exceedingly small, because of the presence of the acetate ion.
$0.10 / K_{a} \gg 100$
$\therefore 0.10-\mathrm{x} \approx 0.10$

The change in acetate ion concentration will be even more negligible.
$\therefore 0.20+\mathrm{x} \approx 0.20$

	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	H^{+}	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$
E	$0.10-\mathrm{x}$	x	$0.20+\mathrm{x}$

- $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}$
$1.74 \times 10^{-5}=\frac{(x)(0.20+x)}{(0.10-x)}$
$1.74 \times 10^{-5}=\frac{(x)(0.20)}{(0.10)}$
$\mathbf{x}=\mathbf{8 . 7} \times \mathbf{1 0}^{-6} \mathbf{~ m o l} / \mathbf{L} \quad \mathrm{x} / 0.10=0.087 \%$
(2) $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$=-\log \left(8.7 \times 10^{-6} \mathrm{~mol} / \mathrm{L}\right)$
$\mathrm{pH}=5.06$

Calculations for basic buffer solutions are very similar.

Example 3. Find the pH of a buffer solution that has $0.10 \mathrm{~mol} / \mathrm{L}$ of NH_{3} and $0.050 \mathrm{~mol} / \mathrm{L} \mathrm{NH}_{4} \mathrm{Cl}$. The K_{b} of NH_{3} is 1.8×10^{-5}.

Homework

- Pg. 567 \#1-8
- Pg. 565 \#1-3

Logic: This basic buffer solution has a pH that is controlled by the reaction of
ammonia with water:
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}$

	NH_{3}	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{NH}_{4}{ }^{+}$	OH^{-}	Solve this one yourself!
I	0.10	-	0.050	0	
C	-x	-	+x	+x	
E	$0.10-\mathrm{x}$	-	$0.050+\mathrm{x}$	x	

