Acids Acids are substances that dissolve in water to produce H⁺ ions. In order to display its acidic properties, it must be in the aqueous state (aq). The formulas of acids always begin with H. ## Naming and Writing Formulas for Acids ## A) BINARY ACIDS (H + ELEMENT, aq) 1. Identify the element bonded to H, and write its name. 2. Write "hydro-" in front of the element, and change the ending to "-ic acid" Example HF (aq) Fluorine is bonded to hydrogen The name of this acid is hydrofluoric acid. H₂S (aq) hydrosulfuric acid ## B) OXYACIDS (H + POLYATOMIC ANION, aq) 1. Identify the element (other than oxygen) in the oxyanion, and write its name. 2. Change the ending to "-ic acid" if the anion ends in -ate, or "-ous acid" if anion ends in -ite. (See table below) | Name of oxyanion | | Name of acid | | Example | | | | | | | | |------------------|-----|--------------|--|-------------------------------|-------------------|-------------------|--|--|--|--|--| | | | | | Anion | Acid | | | | | | | | per | ate | per | ic acid | perchlorate, ClO ₄ | perchloric acid | $HClO_4$ | | | | | | | | ate | | ic acid | chlorate, ClO ₃ | chloric acid | HClO ₃ | | | | | | | | ite | | ous acid | chlorite, ClO ₂ | chlorous acid | $HClO_2$ | | | | | | | hypo | ite | hypo | ous acid | hypochlorite, ClO | hypochlorous acid | HClO | | | | | | | Example | HBr | O_3 (aq) | The bromate ion (BrO ₃ ⁻) is bonded to hydrogen The name of this acid is <u>bromic acid</u> . | | | | | | | | | • Practice: Identify the anion, and name/write the formula for the following acids: | Acid formula | Anion | Acid name | Acid formula | Anion | Acid name | |---|--------------------------------|----------------------|---|-------------------------------|--------------------| | (a) H ₂ S (aq) | S ²⁻ | Hydrosulfuric acid | (j) H ₃ PO ₄ (aq) | PO ₄ ³⁻ | phosphoric acid | | (b) HF (aq) | F- | Hydrofluoric acid | (k) HNO ₂ (aq) | NO ₂ - | nitrous acid | | (c) HNO ₃ (aq) | NO ₃ - | Nitric acid | (l) HBrO ₃ (aq) | BrO ₃ - | bromic acid | | (d) HI (aq) | I- | Hydroiodic acid | (m) HClO ₃ (aq) | ClO ₃ - | chloric acid | | (e) HIO ₃ (aq) | IO ₃ - | Iodic acid | (n) H ₂ SO ₂ (aq) | SO_2^{2-} | hyposulfurous acid | | (f) H ₂ SO ₄ (aq) | SO ₄ ² - | Sulfuric acid | (o) HF (aq) | F- | hydrofluoric acid | | (g) HBr (aq) | Br ⁻ | Hydrobromic acid | (p) H ₂ CO ₃ (aq) | CO_3^{2-} | carbonic acid | | (h) H ₃ PO ₂ (aq) | PO ₂ ³⁻ | Hypophosphorous acid | (q) H ₂ SO ₄ (aq) | SO_4^{2-} | sulfuric acid | | (i) H ₃ P (aq) | P ³⁻ | Hydrophosphoric acid | (r) HClO (aq) | ClO | hypochlorous acid |