Acids

Acids are substances that dissolve in water to produce H⁺ ions. In order to display its acidic properties, it must be in the aqueous state (aq). The formulas of acids always begin with H.

Naming and Writing Formulas for Acids

A) BINARY ACIDS (H + ELEMENT, aq)

1. Identify the element bonded to H, and write its name.

2. Write "hydro-" in front of the element, and change the ending to "-ic acid"

Example HF (aq) Fluorine is bonded to hydrogen

The name of this acid is hydrofluoric acid.

H₂S (aq) hydrosulfuric acid

B) OXYACIDS (H + POLYATOMIC ANION, aq)

1. Identify the element (other than oxygen) in the oxyanion, and write its name.

2. Change the ending to "-ic acid" if the anion ends in -ate, or "-ous acid" if anion ends in -ite. (See table below)

Name of oxyanion		Name of acid		Example							
				Anion	Acid						
per	ate	per	ic acid	perchlorate, ClO ₄	perchloric acid	$HClO_4$					
	ate		ic acid	chlorate, ClO ₃	chloric acid	HClO ₃					
	ite		ous acid	chlorite, ClO ₂	chlorous acid	$HClO_2$					
hypo	ite	hypo	ous acid	hypochlorite, ClO	hypochlorous acid	HClO					
Example	HBr	O_3 (aq)	The bromate ion (BrO ₃ ⁻) is bonded to hydrogen The name of this acid is <u>bromic acid</u> .								

• Practice: Identify the anion, and name/write the formula for the following acids:

Acid formula	Anion	Acid name	Acid formula	Anion	Acid name
(a) H ₂ S (aq)	S ²⁻	Hydrosulfuric acid	(j) H ₃ PO ₄ (aq)	PO ₄ ³⁻	phosphoric acid
(b) HF (aq)	F-	Hydrofluoric acid	(k) HNO ₂ (aq)	NO ₂ -	nitrous acid
(c) HNO ₃ (aq)	NO ₃ -	Nitric acid	(l) HBrO ₃ (aq)	BrO ₃ -	bromic acid
(d) HI (aq)	I-	Hydroiodic acid	(m) HClO ₃ (aq)	ClO ₃ -	chloric acid
(e) HIO ₃ (aq)	IO ₃ -	Iodic acid	(n) H ₂ SO ₂ (aq)	SO_2^{2-}	hyposulfurous acid
(f) H ₂ SO ₄ (aq)	SO ₄ ² -	Sulfuric acid	(o) HF (aq)	F-	hydrofluoric acid
(g) HBr (aq)	Br ⁻	Hydrobromic acid	(p) H ₂ CO ₃ (aq)	CO_3^{2-}	carbonic acid
(h) H ₃ PO ₂ (aq)	PO ₂ ³⁻	Hypophosphorous acid	(q) H ₂ SO ₄ (aq)	SO_4^{2-}	sulfuric acid
(i) H ₃ P (aq)	P ³⁻	Hydrophosphoric acid	(r) HClO (aq)	ClO	hypochlorous acid