Quantities in Chemical Reactions:

Review

Date: Kery

Balancing Equations

Basic concepts:

- Matter cannot be created nor destroyed (Law of Conservation of Matter)
- Balanced equations use COEFFICIENTS to show exactly how much reactant and product are involved in a reaction
- Never change SUBSCRIPTS of chemical formulas in order to balance an equation

Practice 1

a) ___
$$S_8 +$$
__ $O_2 \rightarrow$ __ SO_3

b)
$$_$$
 Al + $_$ FeO \rightarrow $_$ Al₂O₃ + $_$ Fe

d) ___ Fe₂(SO₄)₃ + ___ KOH
$$\rightarrow$$
 ___ K₂SO₄ + ___ Fe(OH)₃

e) ___ Si₂H₃ + ___ O₂
$$\rightarrow$$
 ___ SiO₂ + ___ H₂O₃

[ans: a) 1, 12, 8; b) 2, 3, 1, 3; c) 1, 4, 1, 4; d) 1, 6, 3, 2; e) 4, 17, 8, 6]

The Mole

Basic concepts:

- One mole is an amount equivalent to 6.02 x 10²³ entities (atoms, molecules, or ANYTHING)
- The value 6.02 x 10²³ is also known as Avogadro's number
- The mass of one mole of a substance is called its **MOLAR MASS**, and is expressed in grams/mole (g/mol). It is different for each element, and can be obtained from the atomic mass on the periodic table.
- Molar mass of a compound can be obtained by adding up the individual molar masses of its component atoms.

Practice 2

	Number of atoms	Atomic mass (with units)	Molar mass (with units)
a) H₂O	H=2 O=1	18.02 amu	18.02 g/mol
b) KNO ₃	K=1 N=1 0=3.	101.11 amm	101.11 g/mol.
c) C₃H ₇ OH	C=3 H=B O=1.	60:11 amu	60.11 7/md

Basic concepts:

A molecule's molar mass can be used to convert between molar amounts and gram masses.

Conversion factor: Molar mass (g/mol)

AMOUNT (moles) → MASS (grams)

Practice 3

	Molar mass	Mass	Amount
a) PCl₅	208.24 g/mol	135. a	0.650 mol
b) Al ₂ (SO ₄) ₃	342.15 g/mol	344.009	1.007 mol
c) NaOH	40.00 g/mol	15.0 g	0.375 mol
d) Br ₂	159.81 g/mol	2.20 x 10 ² g	1.38 mol.
e) MgCl ₂	95.21 g/mol	745 mg	7.82×10-31

(0.745g)

Molar Solutions

Basic concepts:

- Solute concentrations are usually expressed in moles of solute per litre of solution (mol/L = M)
- The molar concentration of a solution can be used to convert between molar amounts, and millilitre volumes.

Conversion factor: concentration (mol/L)

AMOUNT (moles)

→ VOLUME (L)

/ 4 (
Practice	1
Practice	4
/ / / / / / / /	•

		Concentration	Volume	Amount of solute	Mass of solute
a)	Mg(OH) _{2 (aq)}	1.58 mol/L	0.375 L	0.593 mol	34.6 9.
b)	H ₂ CO _{3 (aq)}	2.00 mol/L	0.0885 L.	0.177 mol	10.979-11.0
· c)	NaF (aq)	0. 422 MOIL	220 mL	0.0929 mol	3.90 g
· d)	H ₂ O _{2 (aq)}	0.227 moi/L	375 mL	85 mmol	2.89 2.
	a) b)	b) H ₂ CO _{3 (aq)}	Concentration a) Mg(OH) _{2 (aq)} 1.58 mol/L b) H ₂ CO _{3 (aq)} 2.00 mol/L c) NaF (aq) 0.422 Mol/L	Concentration Volume	Concentration Volume Amount of solute

Stoichiometry

Basic concepts:

 Coefficients in balanced equations reflect not only the molecular ratios between reactants and products, but also the MOLAR RATIOS.

Practice 5

a) $2 \text{ Fe}_{2}O_{3} + 3C \rightarrow 4 \text{ Fe} + 3 \text{ CO}_{2}$

	Fe ₂ O ₃	C	Fe	CO₂
Moles	8	12	16.	12.
Mass	1277.60%	144 9.	893.609.	528.12 g.

b) 2 Na₃PO₄ ÷ 3 MgCl₂ → 6 NaCl + Mg₃(PO₄)₂

	Na ₃ PO ₄	MgCl₂	NaCl	Mg ₃ (PO ₄) ₂
Moles	į,	1.5	3	0.5
Mass	163.949.	142.82	175.32 g.	131.44 %.

c) $N_2 + 3 H_2 \rightarrow 2 NH_3$

	N ₂	H ₂	NH ₃
Moles	1.67	5.00	3.33.
Mass	46.79 9-	10.109.	56.749.

d) $2 \text{ HNO}_{3 \text{ (aq)}} + \text{Ca(OH)}_{2 \text{ (aq)}} \rightarrow \text{Ca(NO}_{3})_{2 \text{ (aq)}} + 2 \text{ H}_{2}\text{O}_{(1)}$

	HNO _{3 (aq)}	Ca(OH) _{2 (aq)}	Ca(NO ₃) _{2 (aq)}	H₂O (I)
Moles of solute	0.625 md	0.313 mol.	0.313 mol	0.625 mal.
Solution concentration	1.50 mol/L	1.25 mol/L	0.470 mol/L	N/A
Solution volume	0.4 9 EL.	0.250 L		N/A

0.417 L. O Solve 1st. O.666. L.