Quantities in Chemical Reactions:

Review

Date:

Balancing Equations

Basic concepts:

- Matter cannot be created nor destroyed (Law of Conservation of Matter)
- Balanced equations use COEFFICIENTS to show exactly how much reactant and product are involved in a reaction
- Never change SUBSCRIPTS of chemical formulas in order to balance an equation

Practice 1

a) ____
$$S_8 +$$
___ $O_2 \rightarrow$ ___ SO_3

b) ___Al + ___FeO
$$\rightarrow$$
 ___Al₂O₃ + ___Fe

c)
$$\underline{\hspace{1cm}}$$
 SiCl₄ + $\underline{\hspace{1cm}}$ H₂O \Rightarrow $\underline{\hspace{1cm}}$ H₄SiO₄ + $\underline{\hspace{1cm}}$ HCl

d) ____ Fe₂(SO₄)₃ + ____ KOH
$$\rightarrow$$
 ____ K₂SO₄ + ____ Fe(OH)₃

e) ___ Si₂H₃ + ___ O₂
$$\rightarrow$$
 ___ SiO₂ + ___ H₂O₃

[ans: a) 1, 12, 8; b) 2, 3, 1, 3; c) 1, 4, 1, 4; d) 1, 6, 3, 2; e) 4, 17, 8, 6]

The Mole

Basic concepts:

- One mole is an amount equivalent to 6.02 x 10²³ entities (atoms, molecules, or ANYTHING)
- The value 6.02 x 10²³ is also known as Avogadro's number
- The mass of one mole of a substance is called its **MOLAR MASS**, and is expressed in grams/mole (g/mol). It is different for each element, and can be obtained from the atomic mass on the periodic table.
- Molar mass of a compound can be obtained by adding up the individual molar masses of its component atoms.

Practice 2

	Number of atoms	Atomic mass (with units)	Molar mass (with units)
a) H ₂ O	H=2 O=1	18.02 amu	18.02 g/mol
b) KNO ₃	K=1 N =1 O=3	101.10 amu	101.10 g/mol
c) C ₃ H ₇ OH	C=3 H=8 O=1	60.09 amu	60.09 g/mol

Basic concepts:

A molecule's molar mass can be used to convert between molar amounts and gram masses.

Conversion factor:

Molar mass (g/mol)

AMOUNT (moles) MASS (grams)

Practice 3

	Molar mass	Mass	Amount
a) PCl₅	208.24 g/mol	135 g	0.650 mol
b) Al ₂ (SO ₄) ₃	Al ₂ (SO ₄) ₃ 342.15 g/mol		1.007 mol
c) NaOH	40.00 g/mol	15.0 g	0.375 mol
d) Br ₂	159.81 g/mol	2.20 x 10 ² g	1.38 mol
e) MgCl ₂	95.21 g/mol	745 mg	7.82 x 10 ⁻⁵ mol

Molar Solutions

Basic concepts:

- Solute concentrations are usually expressed in moles of solute per litre of solution (mol/L = M)
- The molar concentration of a solution can be used to convert between molar amounts, and millilitre volumes.

Conversion factor:
concentration (mol/L)

AMOUNT (moles) VOLUME (L)

Practice 4

		Concentration	Volume	Amount of solute	Mass of solute
a)	$Mg(OH)_{2 (aq)}$	1.58 mol/L	0.375 L	0.593 mol	34.6 g
b)	H ₂ CO _{3 (aq)}	2.00 mol/L	0.0885 L	0.177 mol	11.0 g
c)	NaF (aq)	0.42 mol/L	220 mL	0.093 mol	3.90 g
d)	H ₂ O _{2 (aq)}	0.23 mol/L	375 mL	85 mmol	2.9 g

Stoichiometry

Basic concepts:

 Coefficients in balanced equations reflect not only the molecular ratios between reactants and products, but also the MOLAR RATIOS.

Practice 5

a) $2 \text{ Fe}_2\text{O}_3 + 3\text{C} \rightarrow 4 \text{ Fe} + 3 \text{ CO}_2$

	Fe ₂ O ₃	С	Fe	CO_2
Moles	8	12	16	12
Mass	1277.52 g	144.00 g	893.44 g	528.12 g

b) $2 \text{ Na}_{3}\text{PO}_{4} + 3 \text{ MgCl}_{2} \rightarrow 6 \text{ NaCl} + \text{Mg}_{3}(\text{PO}_{4})_{2}$

Moles	Na₃PO₄ 1	MgCl ₂	NaCl 3	Mg ₃ (PO ₄) ₂ 0.5
Mass	163.94 g	142.82 g	175.32 g	131.43 g

c) $N_2 + 3 H_2 \rightarrow 2 NH_3$

	N_2	H ₂	NH ₃
Moles	1.67	5.00	3.33
Mass	46.8 g	10.1 g	56.7 g

d) $2 \text{ HNO}_{3 \text{ (aq)}} + \text{Ca(OH)}_{2 \text{ (aq)}} \rightarrow \text{Ca(NO}_{3})_{2 \text{ (aq)}} + 2 \text{ H}_{2}\text{O}_{\text{ (I)}}$

a) 2111103 (aq) 1 3a(311)2 (aq) 1 2 1123 (i)				
	HNO _{3 (aq)}	Ca(OH) _{2 (aq)}	Ca(NO ₃) _{2 (aq)}	H ₂ O _(I)
Moles of solute	0.626 mol	0.313 mol	0.313 mol	0.626 mol
Solution concentration	1.50 mol/L	1.25 mol/L	0.470 mol/L	N/A
Solution volume	0.417 L	0.250 L	0.667 L	N/A