Quantities in Chemical Reactions:

\qquad

Balancing Equations

Basic concepts:

- Matter cannot be created nor destroyed (Law of Conservation of Matter)
- Balanced equations use COEFFICIENTS to show exactly how much reactant and product are involved in a reaction
- Never change SUBSCRIPTS of chemical formulas in order to balance an equation

Practice 1
a) \qquad $\mathrm{O}_{2} \rightarrow$ \qquad SO_{3}
b) \qquad Al + \qquad $\mathrm{FeO} \rightarrow \ldots \mathrm{Al}_{2} \mathrm{O}_{3}+$ \qquad Fe
c) \qquad $\mathrm{SiCl}_{4}+$ \qquad $\mathrm{H}_{2} \mathrm{O} \rightarrow$ \qquad $\mathrm{H}_{4} \mathrm{SiO}_{4}+$ \qquad HCl
d) \qquad $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+$ \qquad $\mathrm{KOH} \rightarrow$ \qquad $\mathrm{K}_{2} \mathrm{SO}_{4}+$ \qquad $\mathrm{Fe}(\mathrm{OH})_{3}$
e) \qquad $\mathrm{Si}_{2} \mathrm{H}_{3}+$ \qquad $\mathrm{O}_{2} \rightarrow$ \qquad $\mathrm{SiO}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O}_{3}$
[ans: a) $1,12,8$; b) $2,3,1,3$; c) $1,4,1,4$; d) $1,6,3,2$; e) $4,17,8,6]$

The Mole

Basic concepts:

- One mole is an amount equivalent to 6.02×10^{23} entities (atoms, molecules, or ANYTHING)
- The value 6.02×10^{23} is also known as Avogadro's number
- The mass of one mole of a substance is called its MOLAR MASS, and is expressed in grams $/ \mathrm{mole}(\mathrm{g} / \mathrm{mol})$. It is different for each element, and can be obtained from the atomic mass on the periodic table.
- Molar mass of a compound can be obtained by adding up the individual molar masses of its component atoms.

Practice 2

	Number of atoms	Atomic mass (with units)	Molar mass (with units)
a) $\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}=2 \quad \mathrm{O}=1$	18.02 amu	$18.02 \mathrm{~g} / \mathrm{mol}$
b) KNO_{3}	$\mathrm{~K}=1 \quad \mathrm{~N}=1 \quad \mathrm{O}=3$	101.10 amu	$101.10 \mathrm{~g} / \mathrm{mol}$
c) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$	$\mathrm{C}=3 \mathrm{H}=8 \quad \mathrm{O}=1$	60.09 amu	$60.09 \mathrm{~g} / \mathrm{mol}$

Basic concepts:

- A molecule's molar mass can be used to convert between molar amounts and gram masses.

AMOUNT (moles) $\xrightarrow{$| Conversion factor: |
| :--- |
| Molar mass (g/mol) |$}$ MASS (grams)

Practice 3

	Molar mass	Mass	Amount
a) PCl_{5}	$208.24 \mathrm{~g} / \mathrm{mol}$	135 g	0.650 mol
b) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	$342.15 \mathrm{~g} / \mathrm{mol}$	344.5 g	1.007 mol
c) NaOH	$40.00 \mathrm{~g} / \mathrm{mol}$	15.0 g	0.375 mol
d) Br_{2}	$159.81 \mathrm{~g} / \mathrm{mol}$	$2.20 \times 10^{2} \mathrm{~g}$	1.38 mol
e) MgCl_{2}	$95.21 \mathrm{~g} / \mathrm{mol}$	745 mg	$7.82 \times 10^{-5} \mathrm{~mol}$

Molar Solutions

Basic concepts:

- Solute concentrations are usually expressed in moles of solute per litre of solution ($\mathrm{mol} / \mathrm{L}=\mathrm{M}$)
- The molar concentration of a solution can be used to convert between molar amounts, and millilitre volumes.

Conversion factor:
concentration ($\mathrm{mol} / \mathrm{L}$)
AMOUNT (moles) \qquad VOLUME (L)

Practice 4

		Concentration	Volume	Amount of solute	Mass of solute
a)	${\mathrm{Mg}(\mathrm{OH})_{2(\mathrm{aq})}}^{2}$	$1.58 \mathrm{~mol} / \mathrm{L}$	0.375 L	0.593 mol	34.6 g
b)	$\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}$	$2.00 \mathrm{~mol} / \mathrm{L}$	0.0885 L	0.177 mol	11.0 g
c)	$\mathrm{NaF}_{(\mathrm{aq})}$	$0.42 \mathrm{~mol} / \mathrm{L}$	220 mL	0.093 mol	3.90 g
d)	$\mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})}$	$0.23 \mathrm{~mol} / \mathrm{L}$	375 mL	85 mmol	2.9 g

Stoichiometry

Basic concepts:

- Coefficients in balanced equations reflect not only the molecular ratios between reactants and products, but also the MOLAR RATIOS.

Practice 5

a) $2 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 4 \mathrm{Fe}+3 \mathrm{CO}_{2}$

	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	C	Fe	CO_{2}
Moles	8	12	16	12
Mass	1277.52 g	144.00 g	893.44 g	528.12 g

b) $2 \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{MgCl}_{2} \rightarrow 6 \mathrm{NaCl}+\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

	$\mathrm{Na}_{3} \mathrm{PO}_{4}$	MgCl_{2}	NaCl	$\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
Moles	1	1.5	3	0.5
Mass	163.94 g	142.82 g	175.32 g	131.43 g

C) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$

	N_{2}	H_{2}	NH_{3}
Moles	1.67	5.00	3.33
Mass	46.8 g	10.1 g	56.7 g

d) $2 \mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(1)}$

	$\mathrm{HNO}_{3(\mathrm{aq})}$	$\mathrm{Ca}(\mathrm{OH})_{2(a q)}$	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(a q)}$	$\mathrm{H}_{2} \mathrm{O}_{(1)}$
Moles of solute	0.626 mol	0.313 mol	0.313 mol	0.626 mol
Solution concentration	$1.50 \mathrm{~mol} / \mathrm{L}$	$1.25 \mathrm{~mol} / \mathrm{L}$	$0.470 \mathrm{~mol} / \mathrm{L}$	N / A
Solution volume	0.417 L	0.250 L	0.667 L	$\mathrm{~N} / \mathrm{A}$

