Chapter 6

Reaction Kinetics

The rate law for a reaction describes how the reaction is affected by reactant concentration.

rate = k [A]^m [B]ⁿ

 must determine values of exponents (m, n) and rate constant (k) <u>experimentally</u>

$aA + bB \rightarrow cC + dD$

Consider the reaction: **2** NO + 2 H₂ \rightarrow N₂ + 2 H₂O

32

a) Write the rate law equation for this reaction.

- b) What is the overall order of this reaction? 2 + 1 = 3 , 1 = 3
- c) Identify the effect on overall rate if the initial [NO] were tripled, and
- the initial [H₂] were quadrupled. rate $_2 = rele, \times (3^2 \times 4) = rate \times 36$
- d) Calculate a value for the rate constant, k, at this temperature.

Run	Initial [NO] (mol/L)	Initial [H ₂] (mol/L)	Initial rate (mol/Ls)	
1	0.400	0.100	1.10 × 10 ⁻⁵	
2	0.400	0.200	2.20 × 10 ⁻⁵	~~
3	0.800 KZ	0.200	8.80 × 10 ⁻⁵	

Chapter 5

Thermochemistry

Enthalpy (H) is the total energy content of a system.

- Changes (physical, chemical, nuclear) all result in a change in enthalpy, ΔH .
 - Endothermic vs Exothermic

- Can't measure ΔH directly.
- Can <u>estimate</u> ∆H:
 - **1. Experimentally** Using experimental methods A. Calorimetry (5.2)
 - 2. Theoretically Using calculations
 - B. Average bond energies (5.3)
 - C. Hess's law (5.4)
 - D. Standard enthalpies of formation (5.5)

B. Average Bond Energies

Using the bond energies in Table 1 (pg. 307), calculate the enthalpy change for the reaction in which carbon monoxide and steam combine to produce carbon dioxide and hydrogen gases:

 $C=0 \qquad \begin{array}{c} CO + H_2O \\ H+O+H \\ 1mol C=0 \\ 1672 \times 1 \\ mol \end{array} \qquad \begin{array}{c} CO + H_2O \\ H+O+H \\ 2mol C=0 \\ Mol \end{array} \qquad \begin{array}{c} CO_2 + H_2 \\ O=C=0 \\ 2mol C=0 \\ 1mol -H \\ 2mol C=0 \\ 1mol -H \\ 799 \times 1 \\ mol \end{array} \qquad \begin{array}{c} H-H \\ 2mol C=0 \\ 1mol -H \\ 432 \\ mol \end{array}$

Questions to ask yourself:

1. What are the <u>Lewis structures</u> for these molecules? What <u>types</u> of bonds (single, double, triple) are involved?

2. How many bonds are involved per reactant/product?

C. Hess' Law

Concept:

• For a reaction that can occur in elementary steps, the sum of the enthalpy changes of all the steps will equal the overall enthalpy change for the reaction.

Strategy:

- Add up the given equations to achieve the "target" equation
 - · Cancel entities that appear on both sides of the equation
 - · Combine entities that appear on the same side of the equation
- Whatever you do to the elementary equation, do the same to the ΔH value:
 - Reversing the equation \rightarrow Reverse the sign of ΔH
 - Multiply equation by a coefficient \rightarrow Multiply Δ H by the same coefficient

Consider the following equations:

(1)
$$4P + 3O_2 \rightarrow P_4O_6$$

(2) $(P_4O_{10} \rightarrow P_4O_6 + 2O_2)$ $\Delta H = -1640 \text{ kJ}$
 $\Delta H = 1344 \text{ kJ}$ $\rightarrow -$

Calculate ΔH for the reaction represented by the equation:

D. Standard Enthalpies of Formation

Standard Enthalpy of Formation (ΔH°_{f}) – The change in enthalpy that occurs during the formation of 1 mol of a compound from its elements, in their standard states

- Table 1 pg. 320 (compounds)
- · Equals zero for elements in their standard states

Important equation:

 $\Delta H^{\circ}_{\text{reaction}} = (\Sigma n_{\text{products}} \Delta H^{\circ}_{\text{products}}) - (\Sigma n_{\text{reactants}} \Delta H^{\circ}_{\text{reactants}})$

Calculate the standard enthalpy of combustion for methanol, CH_3OH , using standard enthalpy of formation values (Pg. 320). Assume the only products are carbon dioxide, and fiquid water.

 $2 + 30+ + 30_2 + 2 + + + 20(e)$ -239.1 0 -393.5 -285.8

231.1

AH "man = (Enprod × AH"fprod) - (Enreact. × dH"f. react) Questions to ask yourself:

What is the balanced <u>chemical equation</u> for this reaction?
 Are all entities in their <u>standard states?</u>