Genetics Unit Review – Major Concepts

Chapter	Big Concept	Sub-concepts
	Eukaryotic cells divide by mitosis/ cytokinesis.	 Cell division produces two genetically-identical cells from a mother cell. Mitosis occurs in four phases. Cytokinesis is different in animal cells and plant cells.
	Cell division is a small part of the cell cycle.	• Two stages of growth and preparation (G ₁ , G ₂) and a stage of DNA replication (S) make up interphase.
	Somatic cells contain 23 homologous pairs of DNA (2 full sets).	 The homologs in each pair contain corresponding alleles for the same gene. Each parent contributes one full set of DNA to the offspring.
	Meiosis produces haploid gametes.	 Meiosis occurs in two sets of divisions: meiosis I (reduction division) and meiosis II By the end of Meiosis I, the cells are already haploid (n = 23 in humans).
	Meiosis produces new combinations of genes.	 Genetic recombination occurs in two ways: Crossing over/synapsis (linked genes) Independent assortment (unlinked) Gametes are genetically-distinct from one another.
	Errors can occur in meiosis.	 Errors can occur at the level of chromosomal structure, or chromosomal number (aneuploidy). Aneuploidy is produced by non-disjunction at either anaphase. Offspring produced by aneuploid gametes will have noticeable characteristics.
	Reproductive technologies are employed in agriculture and in humans.	 Selective breeding (traditional) Artificial insemination, IVF and embryo transfer (modern)
	Genes can be cloned.	 Possibilities: gene cloning, tissue cloning (therapeutic), organism cloning (reproductive) SCNT is utilized in both therapeutic and reproductive cloning; has associated ethical concerns.
	Transgenic organisms have DNA from other species inserted into their genomes.	 Used to increase agricultural/economic productivity. Associated ethical concerns
5	Alleles for traits can be dominant or recessive.	 Dominant alleles mask the presence of recessive alleles. The phenotype does not necessarily reflect the genotype (in the case of a hybrid).
	Genetic crosses are an experimental method of studying inheritance.	 Mendel's experiments and inferences Mendel's Laws: Segregation and Independent Assortment. Predictions of Mendel's Laws (predictable monohybrid and dihybrid ratios). <u>Terminology</u>: Parental, F₁ (first filial), F₂, cross, test cross, monohybrid, dihybrid, heterozygous, homozygous
	Punnett squares can be used to analyze genetic crosses.	 <u>All</u> genetic crosses (not just hybrid) can be analyzed using Punnett squares. They can be used to make predictions about offspring genotypes/phenotypes, and inferences about parental genotypes.

Many human traits follow simple	Not possible to study human inheritance experimentally.
Mendelian patterns of inheritance.	 Pedigree analysis is used. Be familiar with the symbols
Different patterns of inheritance are reflected in pedigrees.	 Autosomal vs. Sex-linked Dominant vs. Recessive Sometimes more than one pattern of inheritance may be possible, based on a pedigree
6 Some genes follow Mendelian Laws, but the relationship between genotype and phenotype is not straightforward	 Incomplete dominance - One trait is dominant over the other, but cannot completely mask the recessive trait. Co-dominance - Both traits are <u>fully</u> expressed if present. Multiple allelism Human ABO blood groups demonstrate complete dominance, co-dominance, and multiple allelism. Know the genotypes and phenotypes. Pleiotropy - One genotype can have a spectrum of <u>multiple</u> effects in the phenotype.
Polygenic inheritance occurs when multiple loci contribute to the phenotype.	 The phenotype is the result of the additive effects of all present alleles. Polygenic traits exhibit <i>continuous</i> variation in a population (vs. discrete categories) Also called <i>quantitative</i> traits. Examples: Height, skin colour.
Complex inheritance occurs when epistatic interactions exist between loci.	 In epistasis, the particular alleles present at one locus have an effect on the expression of the alleles at a second locus.
Environmental factors during development also play a role in gene expression.	 Genetic determinism is rarely a rule. Environmental influence can affect whether a phenotype is expressed (penetrance), or the degree of expression (expressivity).
Linked genes are genes that tend to be inherited together.	 Empirical observation: They do not follow the law of independent assortment. Parental combinations of alleles are seen more frequently in the F₂ generation. Chromosomal basis: Linked genes are located on the same chromosome.
Sex-linked genes are located on the sex chromosomes (X and Y)	 Sex-linked genes are located in the unique regions of the sex chromosomes (not the pseudo-autosomal regions - PAR) Sex of the individual influences the expression of sex-linked traits. Males are heterogametic (XY) – they are more likely to display X-linked recessive traits Males cannot pass on X-linked recessive traits to their sons, but all daughters will possess at least one recessive allele. Some human traits are sex-linked. Their inheritance can be observed in pedigrees. In females, one X chromosome in each cell becomes randomly inactivated early in development.

Chapter 4

Self assessment Pg. 198 #1-20

Chapter 5 Chapter review Pg. 235 #1-26

Chapter 6 Chapter review Pg. 273 #1-27 (skip 8)