Date: _____

Worksheet: Intermolecular Forces

- 1. Draw Lewis structures for these molecules. Use δ symbols to indicate bond dipoles. Predict whether there is an overall molecular dipole.
 - a. H₂S bent; polar
- d. BrF <mark>lin</mark>d
- b. CCl₄ tetrahedral; non polar c. SO₂ bent; polar
- e. PCl₅
- <mark>linear; polar</mark> trigonal bipyramidal; non-polar

- 2. Complete the table:

		IMF (check all)		
Molecule	Polar or Non?	LDF	Dipole- dipole	H-bond
CH ₃ CF ₃ (2-carbon backbone)	polar	x	х	
CCl ₄	non	x		
SO ₂	polar	x	x	
BrF	polar	x	x	
CH ₃ CH ₂ NH ₂ (C-C-N backbone)	polar	x	x	x
H ₂ O	polar	x	x	x
PCI ₅	non	x		

H₂S, O₂ and CH₃OH all have comparable molecular masses. List the dominant type of IMF for the pure substances, then rank the strength of each compound based on IMFs within the samples (1 = strongest, 2 = in between, 3 = weakest)

Substance	Dominant IMF	Relative strength
H ₂ S	Dipole	2
O ₂	LDF	3
CH₃OH	H bond	1

4. Circle all of the species below that <u>can</u> form a hydrogen bond. Explain why the other species can't hydrogen bond.

C_2H_6 CH_3NH_2 KCl CH_3CH_3CH_2	₂OH
--	-----

 C_2H_6 – non polar therefore only feels LDF KCI – ionic (some would say super polar); no H-F, H-O, or H-N bonds CH₃OCH₃ – CO group is polar, but no H is attached to the O

5. Rank the following compounds in order of increasing strength of intermolecular forces (weakest to strongest). Explain your answers.

 $H_2S \quad I_2 \qquad N_2 \qquad H_2O$

Order: $N_2 < I_2 < H_2S < H_2O$

 N_2 and I_2 are both nonpolar, so they only have London dispersion forces; I_2 has stronger forces because it is larger and has more electrons. H₂S has dipole-dipole, so it is stronger than I_2 . H₂O has hydrogen bonding, so it is stronger than H₂S.

6. Rank the following from weakest intermolecular forces to strongest. Explain your answers. H_2Se H_2S H_2Po H_2Te

Order: H₂S < H₂Se < H₂Te < H₂Po

These compounds are all the same shape, and are all non-polar. Therefore, the difference in London dispersion forces are more important for these compounds. Smallest H₂S = least dispersion forces, largest = H₂Po = strongest dispersion forces.

Order: propane < pentane < heptane

All are non-polar. Heptane is largest therefore has strongest LDF.